Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #2
avatar+26396 
+2

point A is located at (1,4). Point P ar (3,5) is 1/3 the distance from A to point B.

What are the coordinates of point b (SHOW WORK)

 

Formula:

(1λ)A+λB=Pλ=0(10)A+0B=A λ=1(11)A+1B=B λ=13(113)A+13B=P|B= ?

 

B= ?

(113)A+13B=P|B= ?23A+13B=P|32A+B=3P|2AB=3P2A|A=(14)P=(35)B=3(35)2(14)B=(915)(28)B=(92158)B=(77)

 

 

laugh

Jan 29, 2018
 #1
avatar+118704 
+3

Mike draws five cards from a standard 52-card deck. What is the probability that he draws a card from at least three of the four suits? Express your answer as a simplified fraction.

 

I'll give it a go :)

 

There are 52*51*50*49*48 =  311875200  permutationss of 5 cards altogether (with no restrictions)

 

I'm going to try and work out how many of these do not include at least 1 card from 3 different suits.

 

5 hearts

1*(13*12*11*10*9) 

4 hearts and one other card

5*(13*12*11*10*39)

3 hearts and 2 from one other suits

5C2* (13*12*11*13*12)*3  

And this can be multiplied by 4 beacuse there are 4 suits 

 

so

 Number of combinations without 3 different suits represented

= [1*(13*12*11*10*9)   +  5*(13*12*11*10*39)   +  5C2* (13*12*11*13*12)*3 ]    *4

=(13*12*11*4)[ 90  +  5*(390)   +  10* (156)*3  ]

= [(13*12*11*4)[ 90  +  1950   +  4680  ]

= [(13*12*11*10*4)[ 9  +  195  +  468  ]

= 13*12*11*10*4* 672 

 

So the number of combinations with at least 3 different suites represented 

=  52*51*50*49*48 - 13*12*11*10*4* 672 

= 12*4   [ 52*51*50*49   -   13*11*10* 672 ]

= 12*4*10*13   [ 4*51*5*49   -   11* 672 ]

= 12*4*10*13*4   [ 51*5*49   -   11* 168 ]

= 12*4*10*13*4 *7  [ 51*5*7   -   11* 24 ]

= 12*4*10*13*4 *7 *3 [ 17*5*7   -   11* 8 ]

= 3*4*4*7 *10*12*13 [ 595   -   88 ]

= 3*4*4*7 *10*12*13 *507

 

So the prob of not getting at least 3 suites 

 

=34471012135075251504948=5071757=507595

.
Jan 29, 2018
 #3
avatar+26396 
+4

What is the smallest positive integer N  for which

(12,500,000)n 

leaves a remainder of 111 when divided by 999,999,999?

1.

(12 500 000)n111(mod999 999 999)|:(12 500 000)n111112 500 000(mod999 999 999)

 

According to Euler's theorem,if a is coprime to m, that is, gcd(a,m)=1, then aϕ(m)1(modm),where ϕ is Euler's totient function.Therefore, a modular multiplicative inverse can be found directly:aϕ(m)1a1(modm).

 

2.

greatest common divisor gcd(12 500 000,999 999 999)=1 

 

112 500 000(mod999 999 999)12 500 0001(mod999 999 999)12 500 000ϕ(999 999 999)1(mod999 999 999)12 500 000648 646 7041(mod999 999 999)12 500 000648 646 703(mod999 999 999)80(mod999 999 999)

 

3. n = ?

n111112 500 000(mod999 999 999)111(12 500 0001(mod999 999 999))11180(mod999 999 999)8880(mod999 999 999)

 

The smallest positive integer n is 8880.

 

12 500 0008880111(mod999 999 999)110 000 000 000111(mod999 999 999) 

 

laugh

Jan 29, 2018
 #1
avatar+26396 
+3

A ball travels on a parabolic path in which the height (in feet) is given by the expression $-16t^2+80t+21$,
where $t$ is the time after launch.
What is the maximum height of the ball?

 

 

The graph:

 

h(t)=16t2+80t+21h=0 ?16t2+80t+21=0t1,2=80±8024(16)212(16)=80±6400+134432t1,2=80±8832t1=80+8832=832t1=0.25t2=808832=16832t2=5.25thmax=t1+t22=0.25+5.252=52thmax=2.5

 

hmax=16thmax2+80thmax+21|thmax=2.5=162.52+802.5+21=100+200+21=121 feet

 

The maximum height of the ball is 121 feet

 

laugh

Jan 29, 2018
 #3
avatar+489 
+2
Jan 29, 2018
Jan 28, 2018

1 Online Users

avatar