Questions   
Sort: 
 #1
avatar+118678 
+3

Mike draws five cards from a standard 52-card deck. What is the probability that he draws a card from at least three of the four suits? Express your answer as a simplified fraction.

 

I'll give it a go :)

 

There are 52*51*50*49*48 =  311875200  permutationss of 5 cards altogether (with no restrictions)

 

I'm going to try and work out how many of these do not include at least 1 card from 3 different suits.

 

5 hearts

1*(13*12*11*10*9) 

4 hearts and one other card

5*(13*12*11*10*39)

3 hearts and 2 from one other suits

5C2* (13*12*11*13*12)*3  

And this can be multiplied by 4 beacuse there are 4 suits 

 

so

 Number of combinations without 3 different suits represented

= [1*(13*12*11*10*9)   +  5*(13*12*11*10*39)   +  5C2* (13*12*11*13*12)*3 ]    *4

=(13*12*11*4)[ 90  +  5*(390)   +  10* (156)*3  ]

= [(13*12*11*4)[ 90  +  1950   +  4680  ]

= [(13*12*11*10*4)[ 9  +  195  +  468  ]

= 13*12*11*10*4* 672 

 

So the number of combinations with at least 3 different suites represented 

=  52*51*50*49*48 - 13*12*11*10*4* 672 

= 12*4   [ 52*51*50*49   -   13*11*10* 672 ]

= 12*4*10*13   [ 4*51*5*49   -   11* 672 ]

= 12*4*10*13*4   [ 51*5*49   -   11* 168 ]

= 12*4*10*13*4 *7  [ 51*5*7   -   11* 24 ]

= 12*4*10*13*4 *7 *3 [ 17*5*7   -   11* 8 ]

= 3*4*4*7 *10*12*13 [ 595   -   88 ]

= 3*4*4*7 *10*12*13 *507

 

So the prob of not getting at least 3 suites 

 

\(=  \dfrac{3*4*4*7 *10*12*13 *507}{52*51*50*49*48}\\ =  \dfrac{507}{17*5*7}\\ =  \dfrac{507}{595}\\\)

.
Jan 29, 2018
 #3
avatar+26393 
+4

What is the smallest positive integer N  for which

\((12{,}500{,}000)\cdot n\) 

leaves a remainder of 111 when divided by 999,999,999?

1.

\(\begin{array}{|rcll|} \hline (12~500~000)\cdot n & \equiv & 111 \pmod{999~999~999} \quad & | \quad :(12~500~000) \\ n & \equiv & 111\cdot \dfrac{1}{12~500~000} \pmod{999~999~999} \\ \hline \end{array}\)

 

\(\begin{array}{|lcll|} \hline \text{According to Euler's theorem,} \\ \text{if $a$ is coprime to $m$, that is, $gcd(a, m) = 1$, then }\\ {\displaystyle a^{\phi (m)}\equiv 1{\pmod {m}},}\\ \text{where ${\displaystyle \phi } $ is Euler's totient function.}\\ \text{Therefore, a modular multiplicative inverse can be found directly:} \\ {\displaystyle a^{\phi (m)-1}\equiv a^{-1}{\pmod {m}}.} \\ \hline \end{array}\)

 

2.

\(\text{greatest common divisor $gcd(12~500~000,999~999~999) = 1$ }\)

 

\(\begin{array}{|rcll|} \hline && \dfrac{1}{12~500~000} \pmod{999~999~999} \\\\ & \mathbf{\equiv} & \mathbf{12~500~000^{-1} \pmod{999~999~999}} \\\\ & \equiv & 12~500~000^{\phi (999~999~999)-1} \pmod{999~999~999} \\\\ & \equiv & 12~500~000^{648~646~704-1} \pmod{999~999~999} \\\\ & \equiv & 12~500~000^{648~646~703} \pmod{999~999~999} \\\\ & \mathbf{\equiv} & \mathbf{80 \pmod{999~999~999}} \\ \hline \end{array}\)

 

3. n = ?

\(\begin{array}{|rcll|} \hline n & \equiv & 111\cdot \dfrac{1}{12~500~000} \pmod{999~999~999} \\\\ & \equiv & 111\cdot \left( 12~500~000^{-1} \pmod{999~999~999} \right) \\\\ & \equiv & 111\cdot 80 \pmod{999~999~999} \\\\ & \mathbf{\equiv} & \mathbf{ 8880 \pmod{999~999~999} } \\ \hline \end{array}\)

 

The smallest positive integer n is 8880.

 

\(\begin{array}{rcll} 12 ~500~000 \cdot 8880 &\equiv & 111 \pmod{999~999~999} \\ 110~000~000~000 &\equiv & 111 \pmod{999~999~999}\ \checkmark\\ \end{array}\)

 

laugh

Jan 29, 2018
 #3
avatar+490 
+2
Jan 29, 2018
Jan 28, 2018

3 Online Users