Questions   
Sort: 
 #1
avatar+129852 
+2

1)  If this were a right triangle...it would have to be that

 

8^2 + 9^2  = 12^2      but

 

64 + 81  >  144

 

145 > 144

 

Thus....angle ABC isn't quite large enough to be 90°

 

And the other two angles are definitely < 90° each....so this is an acute triangle

 

2) In isosceles triangle APS, we have  angle P is equal to 54 degrees and AP = AS. Which is larger, AP or PS?

                                                       A

 

 

                                           P                   S

 

Angle  APS  = Angle  ASP......So....angle  PAS =  [ 180  - 2*54 ] =    180 - 108  = 72°

And in a triangle.....the greater side is opposite the greater angle......and angle PAS > angle ASP.....so ...... PS > AP

 

 

3)In actute triangle ABC, we know  AB = 7, BC = 8 and that CA is the shortest side. What is the smallest possible integer value of CA?

 

Since this is an acute triangle, we must have that

 

7^2  + CA^2 >  8^2

49 + CA^2  > 64

CA^2 > 15

CA > √15  ⇒    CA > ≈ 3.8

So....the least integer value for CA  is  4

 

 

 

4)In obtuse triangle ABC, we know  AB = 7, BC = 8 and that CA is the longest side. What is the smallest possible integer value of CA?

 

Since the triangle is obtuse and CA is the longlest side, we must have that

 

AB^2 + BC^2  <  CA^2

7^2  + 8^2  < CA^2

49 + 64 < CA^2

113 < CA^2

√113  < CA

CA > √113 ≈ 10.6

So ......   the smallest possible integer value for CA  is 11

 

 

5)Two diagonals of a parallelogram have lengths 6 and 8. What is the largest possible length of the shortest side of the parallelogram?

 

The diagonals will bisect each other......

So we have 4 triangles that have two sides of 3 and 4

And....by the triangular inequality, we have that

 

 

Longest side + Intermediate side > Shortest side

4 + 3  >  Shortest side

7 > Shortest side

Shortest side < 7

 

So......the largest possible value for the shortest side must be < 3

 

 

6)Two sides of an acute triangle are 8 and 15. How many possible lengths are there for the third side if it is an integer?

 

Longest possible side length  

8 + 15  >  Third side length

23 > Third side length

Third side length < 23

 

Shortest possible side length

8 + Shortest side length > 15

Shortest side > 7

 

So.....the possible integer side lengths are

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 19,, 20 21, 22

 

So.....15 integer lengths are possible

 

 

Don't know how to do 7....maybe someone else has a solution......!!!

 

 

cool cool cool                                 

Jan 28, 2018
 #2
avatar+129852 
+2

2)

 

Here's a pic of the way I set this up :

 

 

 

 

The radius  of the larger  hexagon can be found as follows :

Area   =  1            ....so....

 

3 r^2 sin (60)  =  1

3r^2 * √3/2 = 1

r^2  =    2  / √27

r  =  √  [ 2 / √27 ]

 

The y coordinate of  B  is      r * sin (60°) =  √  [ 2 / √27 ] * [ √3 / 2 ]  

And the y coordinate  of F  is  r * sin (-60°)   - √  [ 2 / √27 ] * [ √3 / 2 ]

 

And the distance between them, BF,  is just    2 * √  [ 2 / √27 ] * [ √3 / 2 ]    =  

√  [ 2 / √27 ] *  √3 =

√ [ 6 / √27]

 

Note that because they span equal arcs, chords AC and BF are equal

And by SSS, triangle CBA is congruent to triangle BAF  and both are isosceles

And angle ACB  = angle BAC =  angle BAF = angle FBA

So  angle FBA  =  angle BAC....so BH  = HA

 

And angle CBA  = angle BAE  =  90°

So...subtracting equal angles , then angle HBI  = angle HAM

And angle BHI  = angle AHM

So...by  SAS, triangle BHI  is congruent to triangle AHM

 

But  since HI  is a transversal that cuts parallels  DB  and AE....then angle HAM  = angle HIB

But angle HAM  =  angle HBI......so  angle HBI  = angle HIB

And angle HIB  =  angle HMA.....so angle HAM  = angle HMA

 

So  HM   = AH      and  HI  = HB

So.....HM = HI = AH = HB

So .....since triangles BHI and AHM are congruent.....then HM  = HB

 

And by similar logic, we can prove that HM  = MF

 

So..... HB  = HM = HF

 

So....side HM of hexagon HIJKLM  is 1/3  of BF

 

So....the area of the hexagon is

 

3 * [ 6 / √27] / 9 * √3 / 2  =

 

√3 / √27  =

 

√3 /  [ 3 √3]  =

 

1/3 units^2

 

 

cool cool cool

Jan 28, 2018
Jan 27, 2018

2 Online Users