9)In cyclic quadrilateral ABCD, AB = 2, BC = 3, CD = 10, and DA = 6. Let P be the intersection of lines AB and CD. Find the length BP.
Draw AC
AC^2 = 2^2 + 3^2 - 2(3)(2)cos (ABC)
AC^2 = 13 - 12cos(ABC) (1)
And since ABC is obtuse and ADC is supplemental to ABC, cos(ADC) = -cos(ABC)
So
AC^2 = 6^2 + 10^2 - 2(6)(10)cos(ADC)
AC^2 = 6^2 + 10^2 - 120 [ -cos(ABC) ]
AC^2 = 6^2 + 10^2 + 120cos(ABC)
AC^2 = 136 + 120cos(ABC) (2)
Subtract (1) from (2)
0 = 123 + (120 + 12) cos(ABC)
0 = 123 + 132cos(ABC)
-123 / 132 = cos (ABC)
-41/44 = cos(ABC)
So sin (ABC) = √ [ 1 - (41/44)^2 ] = √ (255) / 44 = sin PBC
Likewise.....draw DB
DB^2 = 6^2 + 2^2 - 2(6)(2)cos(DAB)
DB^2 = 40 - 24cos(DAB)
And sincw DAB is obtuse and DCB is supplemental to DCB, cos(DCB) = -cos(DAB)
So
DB^2 = 10^2 + 3^2 - 2(10)(3)cos(DCB)
DB^2 = 10^2 + 3^2 - 60 [-cos(DAB) ]
DB^2 = 109 + 60cos(DAB)
Subtract (3) from (4)
0 = 69 + (60 + 24) cos(DAB)
-69/84 = cos(DAB)
-23/28 = cos(DAB)
So sin (DAB) = √ [ 1 - (23/28)^2 ] = √ (255)/28 = sin PCB
sin PBC / sin PCB = PC/ PB
(√ (255) / 44) / ( √ (255)/28) = PC / PB
28 / 44 = PC /PB
7/11 = PC /PB
PC = (7/11)PB
And we have that
(PB + AB) * PB = PC(PC + CD)
(PB + 2) * PB = (7/11)PB [ (7/11)PB + 10)
PB^2 + 2PB = (49/121)PB^2 + (70/11)PB
Let PB = x
x^2 + 2x = (49/121)x^2 + (70/11)x
(121 - 49) x^2 / 121 + (2 - 70/11)x = 0
(72/121)x^2 - (48/11)x = 0
(1/11)x [ (72/11)x - 48 ] = 0
So..... either x = 0 {reject} or
(72/11)x - 48 = 0
(72/11)x = 48
x = 48(11)/72 = (2/3) * 11 = 22/3 = PB = BP
Proof {PC = (7/11)PB = (7/11)(22/3) = 14/3 }
(PB + AB) * PB = PC(PC + CD)
(22/3 + 2) * (22/3) = (14/3) * ( 14/3 + 10)
616 / 9 = 616 / 9