Questions   
Sort: 
 #2
avatar+4116 
0
Mar 9, 2018
 #1
avatar+26393 
+1

Enter (A,B,C,D) in order below if A, B, C, and D are the coefficients of the partial fractions expansion of

\(\displaystyle12\cdot\frac{x^3+4}{(x^2-1)(x^2+3x+2)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x+1} + \frac{D}{(x+1)^2}\)

12\cdot\frac{x^3+4}{(x^2-1)(x^2+3x+2)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x+1} + \frac{D}{(x+1)^2}

 

\(\small{ \begin{array}{|rcll|} \hline 12\cdot\dfrac{x^3+4}{(x^2-1)(x^2+3x+2)} &=& 12\cdot\dfrac{x^3+4}{(x-1)(x+1)(x+2)(x+1)} \\ \\ \hline \\ 12\cdot\frac{x^3+4}{(x-1)(x+1)(x+2)(x+1)} &=& \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x+1} + \frac{D}{(x+1)^2} \qquad | \qquad \cdot (x-1)(x+2)(x+1)^2 \\ \hline \end{array} }\)

 

\(\begin{array}{|rcll|} \hline 12(x^3+4) &=& A\cdot (x+2)(x+1)^2 + B\cdot (x-1)(x+2)^2 \\ &+& C\cdot (x-1)(x+2)(x+1) + D\cdot (x-1)(x+2) \\ \hline \end{array}\)

 

\(\small{ \begin{array}{lrcll} \hline \mathbf{x = 1:} & 12(1 + 4) &=& A\cdot (1+2)(1+1)^2 + B\cdot 0 + C\cdot 0 + D\cdot 0 \\ & 60 &=& A\cdot 3 \cdot 4 \\ & 60 &=& 12A \\ & \mathbf{A} &\mathbf{=}& \mathbf{5} \\ \\ \hline \mathbf{x = -1:} & 12(-1 + 4) &=& A\cdot 0 + B\cdot 0 + C\cdot 0 + D\cdot (-1-1)(-1+2) \\ & 36 &=& -2D \\ & \mathbf{D} &\mathbf{=}& \mathbf{-18} \\ \\ \hline \mathbf{x = -2:} & 12(-8 + 4) &=& A\cdot 0 + B\cdot (-2-1)(-2+1)^2 + C\cdot 0 + D\cdot 0 \\ & -48 &=& -3B \\ & 48 &=& 3B \\ & \mathbf{B} &\mathbf{=}& \mathbf{16} \\ \\ \hline \mathbf{x =0:} & 12(0 + 4) &=& A\cdot 2 + B\cdot (0-1)(0+1)^2 + C\cdot (0-1)(0+2)(0+1)\\ & &+& D\cdot (0-1)(0+2) \\ & 48 &=& 2A-B-2C-2D \\ & 48 &=& 2\cdot 5-16-2C-2\cdot(-18) \\ & 48 &=& 10-16-2C+36 \\ & 48 &=& 30-2C \\ & 2C &=& 30-48 \\ & 2C &=& -18 \\ & \mathbf{C} &\mathbf{=}& \mathbf{-9} \\ \hline \end{array} }\)

 

\(\displaystyle 12\cdot\frac{x^3+4}{(x^2-1)(x^2+3x+2)} = \frac{5}{x-1} + \frac{16}{x+2} - \frac{9}{x+1} - \frac{18}{(x+1)^2}\)

 

\(\mathbf{(A,B,C,D) = (5,16,-9,-18)}\)

 

laugh

Mar 9, 2018
 #1
avatar+26393 
0

 Enter (A,B,C,D,E) in order below if A, B, C, D, and E are the coefficients of the partial fractions expansion of

\(\displaystyle f(x) = 3\cdot\frac{x^4+x^3+x^2+1}{x^2+x-2} = Ax^2 + Bx + C + \frac{D}{x+2} + \frac{E}{x-1}. \)

f(x) = 3\cdot\frac{x^4+x^3+x^2+1}{x^2+x-2} = Ax^2 + Bx + C + \frac{D}{x+2} + \frac{E}{x-1}.

 

\(\small{ \begin{array}{|rcll|} \hline 3\cdot\dfrac{x^4+x^3+x^2+1}{x^2+x-2} &=& 3\cdot\dfrac{x^4+x^3+x^2+1}{(x+2)(x-1)} \\ \\ \hline \\ 3\cdot\dfrac{x^4+x^3+x^2+1}{(x+2)(x-1)} &=& Ax^2 + Bx + C + \dfrac{D}{x+2} + \dfrac{E}{x-1} \qquad | \qquad \cdot (x+2)(x-1) \\ \hline \end{array} }\)

 

\(\begin{array}{|rcll|} \hline 3(x^4+x^3+x^2+1) &=& A\cdot x^2(x+2)(x-1) + B\cdot x(x+2)(x-1) \\ &+& C\cdot (x+2)(x-1) + D\cdot (x-1) + E\cdot(x+2) \\ \hline \end{array}\)

 

\(\small{ \begin{array}{lrcll} \hline \mathbf{x = 1:} & 3(1 +1+1+1) &=& A\cdot 0 + B\cdot 0 + C\cdot 0 + D\cdot 0 + E\cdot (1+2) \\ & 12 &=& 3E \\ & \mathbf{E} &\mathbf{=}& \mathbf{4} \\ \\ \hline \mathbf{x = -2:} & 3(16-8+4+1) &=& A\cdot 0 + B\cdot 0 + C\cdot 0 + D\cdot (-2-1) + E\cdot 0 \\ & 3\cdot 13 &=& -3D \\ & 13 &=& - D \\ & \mathbf{D} &\mathbf{=}& \mathbf{-13} \\ \\ \hline \mathbf{x = 0:} & 3(0+0+0+1) &=& A\cdot 0 + B\cdot 0 + C\cdot(0+2)(0-1) + D\cdot (0-1) + E\cdot (0+2) \\ & 3 &=& -2C-D+2E \\ & 3 &=& -2C-(-13)+2\cdot 4 \\ & 3 &=& -2C+13+8 \\ & 3 &=& -2C+ 21 \\ & 2C &=& 21 -3 \\ & 2C &=& 18 \\ & \mathbf{C} &\mathbf{=}& \mathbf{9} \\ \\ \hline \mathbf{x = -1:} & 3(1 -1+1+1) &=& A\cdot 1(-1+2)(-1-1) + B\cdot (-1)(-1+2)(-1-1) \\ & &+& C\cdot (-1+2)(-1-1) + D\cdot (-1-1) + E\cdot (-1+2) \\ & 6 &=& -2A+2B-2C-2D+E \\ & 6 &=& -2A+2B-2\cdot 9 +2\cdot 13+ 4 \qquad | \qquad : 2 \\ & 3 &=& -A+B-9 +13+ 2 \\ & 3 &=& -A+B+6 \\ & \mathbf{-A+B} &\mathbf{=}& \mathbf{-3} \qquad (1) \\ \\ \hline \mathbf{x = 2:} & 3(16+8+4+1) &=& A\cdot 4(2+2)(2-1) + B\cdot 2(2+2)(2-1) \\ & &+& C\cdot (2+2)(2-1) + D\cdot (2-1) + E\cdot (2+2) \\ & 87 &=& 16A+8B+4C+D+4E \\ & 87 &=& 16A+8B+4\cdot 9 -13+4\cdot 4 \\ & 87 &=& 16A+8B+36 -13+16 \\ & 87 &=& 16A+8B+39 \\ & 16A+8B&=& 87 - 39 \\ & 16A+8B&=& 48 \qquad | \qquad : 8 \\ & \mathbf{2A+B} &\mathbf{=}& \mathbf{6} \qquad (2) \\ \hline \end{array} }\)

 

\(\begin{array}{|lrclcrclr|} \hline (2) & 2A+B &=& 6 &\qquad & -A+B &=& -3 & (1) \\ & & & &\qquad & B &=& -3+A \\ & 2A-3+A &=& 6 \\ & 3A &=& 9 \\ & \mathbf{A } &\mathbf{=}&\mathbf{ 3} \\ & & & &\qquad & B &=& -3+3 \\ & & & &\qquad & \mathbf{B} &\mathbf{=}&\mathbf{ 0} \\ \hline \end{array} \)

 

\(\displaystyle f(x) = 3\cdot\frac{x^4+x^3+x^2+1}{x^2+x-2} = 3x^2 + 0\cdot x + 9 - \frac{13}{x+2} + \frac{4}{x-1}\)

 

\(\mathbf{(A,B,C,D,E) = (3,0,9,-13,4)}\)

 

laugh

Mar 9, 2018
 #2
avatar+129907 
+1

9)In cyclic quadrilateral ABCD, AB = 2, BC = 3, CD = 10, and DA = 6. Let P be the intersection of lines AB and CD. Find the length BP.

 

Draw AC

 

AC^2  =  2^2  + 3^2   -  2(3)(2)cos (ABC)  

AC^2  = 13  - 12cos(ABC)   (1)

And since ABC is obtuse and ADC  is supplemental to ABC, cos(ADC)  = -cos(ABC)

So

AC^2   = 6^2  + 10^2 - 2(6)(10)cos(ADC)

AC^2  = 6^2 + 10^2  - 120 [ -cos(ABC) ]

AC^2  = 6^2 + 10^2 + 120cos(ABC)   

AC^2  = 136 + 120cos(ABC)   (2)

Subtract (1) from (2)

0  = 123  + (120 + 12) cos(ABC)

0  =  123  + 132cos(ABC)

-123 / 132  =  cos (ABC)

-41/44 = cos(ABC)   

So  sin (ABC)  =  √ [ 1 -  (41/44)^2 ]  =   √ (255) / 44   =  sin PBC

 

Likewise.....draw  DB

DB^2  = 6^2  + 2^2  - 2(6)(2)cos(DAB)

DB^2  = 40 - 24cos(DAB)

And sincw DAB is obtuse and DCB is supplemental to DCB, cos(DCB) = -cos(DAB)

So

DB^2  = 10^2 + 3^2  - 2(10)(3)cos(DCB)

DB^2 =  10^2 + 3^2  - 60 [-cos(DAB) ]  

DB^2   =  109 + 60cos(DAB)

Subtract (3) from (4)

0  = 69 + (60 + 24) cos(DAB)

-69/84  = cos(DAB)

-23/28  = cos(DAB)

So sin (DAB)  = √  [ 1 - (23/28)^2 ]  = √ (255)/28  =  sin PCB

 

sin PBC / sin PCB   = PC/ PB

(√ (255) / 44)  / ( √ (255)/28)  = PC / PB

28 / 44 = PC /PB

7/11 = PC /PB

PC   =  (7/11)PB

 

And we have that

 

(PB + AB) * PB   = PC(PC + CD)

(PB + 2) * PB  = (7/11)PB [ (7/11)PB + 10)

PB^2 + 2PB  =  (49/121)PB^2 + (70/11)PB

 

Let PB  = x

 

x^2 + 2x =  (49/121)x^2 + (70/11)x

(121 - 49) x^2 / 121   +  (2 - 70/11)x  = 0

(72/121)x^2  -  (48/11)x  = 0

(1/11)x [ (72/11)x - 48 ] = 0

 

So..... either x  =  0   {reject}    or

 

(72/11)x  - 48  = 0

(72/11)x  =  48

  x =  48(11)/72  =  (2/3) * 11  =   22/3   =  PB  = BP

 

Proof   {PC  = (7/11)PB  =  (7/11)(22/3)  = 14/3 }

 

(PB + AB) * PB   = PC(PC + CD)

 

(22/3 + 2) * (22/3)  =  (14/3) * ( 14/3 + 10)

 

616 / 9    =   616 / 9

 

 

 

 

cool cool cool

Mar 9, 2018
 #2
avatar+753 
+4
Mar 9, 2018
 #5
avatar+753 
+3
Mar 9, 2018
Mar 8, 2018
 #1

0 Online Users