The polynomial f(x) has degree 3. If f(-1) = 15, f(0) = 0, f(1) = -5, and f(2) = 12,
then what are the x-intercepts of the graph of f?
f(x)=ax3+bx2+cx+d degree 3
f(0)=0:f(0)=0=a⋅03+b⋅02+c⋅0+d0=dd=0
So f(x)=ax3+bx2+cx
f(1)=−5:f(1)=−5=a⋅13+b⋅12+c⋅1−5=a+b+ca+b+c=−5(1)
f(−1)=15:f(−1)=15=a⋅(−1)3+b⋅(−1)2+c⋅(−1)15=−a+b−c−a+b−c=15(2)
(1)+(2):
(1)a+b+c=−5(2)−a+b−c=15(1)+(2):2b=−5+152b=10b=5(1):a+b+c=−5|b=5a+5+c=−5a+c=−10(3)
f(2)=12:f(2)=12=a⋅(2)3+b⋅(2)2+c⋅(2)12=8a+4b+2c|b=512=8a+4⋅5+2c12=8a+20+2c8a+2c=12−208a+2c=−8|:24a+c=−4(4)
(4)−(3):
(4)4a+c=−4(3)a+c=−10(4)−(3):3a=−4+−(−10)3a=6a=2(3):a+c=−10|a=22+c=−10c=−12
The x-intercepts of the graph of f(x)=2x3+5x2−12x:
2x3+5x2−12x=0x⋅(2x2+5x−12)=0x1=02x2+5x−12=0x=−5±√25−4⋅2⋅(−12)2⋅2x=−5±√1214x=−5±114x2=−5+114x2=32x3=−5−114x3=−4
The x-intercepts of the graph of f(x) are 0,32,−4

