Suppose that
ABC4+20010=ABC9
ABC_4+200_{10}=ABC_9,
where A, B, and C are valid digits in base 4 and 9.
What is the sum when you add all possible values of A, all possible values of B, and all possible values of C?
1.
A, B, and C are valid digits in base 4 and 9
A={0,1,2,3}B={0,1,2,3}C={0,1,2,3}
2.
ABC4+20010=ABC9ABC4=⏞A⋅42+B⋅4+C+200=ABC9=⏞A⋅92+B⋅9+C16A+4B+200=81A+9B65A+5B=200|:513A+B=40
3.
Possible values of A and B
AB13A+B=40 ?000112233101311421531620261272283293039140✓241342A=3, B=1, C=0,1,2,3
sum=3+1+0+1+2+3=10
The sum when you add all possible values of A, all possible values of B, and all possible values of C is 10
check:
3104+20010=3109=252103114+20010=3119=253103124+20010=3129=254103134+20010=3139=25510
