Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #1
avatar
0
Jan 25, 2019
 #1
avatar
0
Jan 25, 2019
 #1
avatar+26396 
+8

If I have a list of 5 numbers each of them following another [1,2,3,4,5] and I want to multiply all of them together. 

How do I write (1*2)+(1*3)+(1*4)+(1*5)+(2*3)+(2*4)+(2*5)+(3*4)+(3*5)+(4*5)

But with 4000 numbers in the list instead of 5 without having to write every instance out?

Is it possible to make a rule and calculate it in a common calculator? 

 

Table:

multiply123451123452246810336912154481216205510152025sum1530456075arithmetical sequence

 

Let the sum of all numbers in the table S=15+30+45+60+75=225Let the sum we are looking for s=(12)+(13)+(14)+(15)+(23)+(24)+(25)+(34)+(35)+(45)=2+3+4+5+6+8+10+12+15+20=85Let the sum of all square numbers in the diagonal of the table q=1+4+9+16+25=55

 

So we see the formula: S=2s+q  or s=12(Sq)

 

S= ?

an=a1+(n1)d|d=a1=a1+(n1)a1=a1+na1a1=na1|a1=(1+n)n2=(1+n)n22S=(a1+an)n2=((1+n)n2+(1+n)n22)n2=((1+n)+(1+n)n)n24=(n2+2n+1)n24=(n+1)2n24S=[(n+1)n2]2

 

q= ?

q=(n+1)n2(2n+1)3|from the formula collection

 

s= ?

s=12(Sq)=12([(n+1)n2]2(n+1)n2(2n+1)3)=(n+1)n4[(n+1)n2(2n+1)3]=(n+1)n24[3n(n+1)2(2n+1)]=(n+1)n(3n2n2)24=(n+1)n(3n+2)(n1)24s=(n1)n(n+1)(3n+2)24

 

Example: [1,2,3,4,5]

So n=5

s=(51)5(5+1)(35+2)24=4561724=517=85 

 

Example:[1,2,3,4,5,,4000]

So n=4000

s=(40001)4000(4000+1)(34000+2)24=3999400040011200224=1333100040016001=32 005 331 333 000

 

 

laugh

Jan 25, 2019
 #3
avatar+118703 
+2

I do not believe the question can be answered. 3.5 is too small there is no solution.

I think that 3.5 was an approximation, not an exact value.  The exact value that they wanted was sqrt(12.8) which is approx 3.5776.  

This is an approximation of the smallest possible perimeter of the octagon.

 

 

Ok now with the proper explanaton, But I am replacing 3.5 with  P which will eventually be replaced with sqrt(12.8)

 

I discovered lots about rotational symmetry while I was answering this question. It is really cool!

 

 

 

For starters why don't I say that the perimeter of the octagon is P units and work from there.  

 

a+2b=1a=12b 8a2+b2=P1+4b24b+b2=P85b24b+1=P85b24b+1=P2645b24b+64P264=0=1620(64P2)64=166420(64P2)64=4645(64P2)16=64+5P216

 

There can be no real solution if the discriminant is negative so 5P^2 must be bigger or equal to 64

5P264P212.8P12.8which is approximately 3.5777

 

So I am going to assume that the question intended the perimeter of the octagon to be  sqrt(12.8)

which makes the discriminant 0

 

5b24b+64P264=0P=12.8b=4±010=25a=12b=15P=8125+425=64525=12.8Excellent

 

Area of the octogon = 140.5ab=120.20.4=10.16=0.84units2

.
Jan 25, 2019
 #1
avatar+26396 
+8

Let $A_1 A_2 \dotsb A_{11}$ be a regular 11-gon inscribed in a circle of radius 2.

Let $P$ be a point, such that the distance from $P$ to the center of the circle is 3.

Find PA21+PA22++PA211.

 

Let An=(xaya) xa=2cos((n1)36011) ya=2sin((n1)36011) n=1,2,11 Let P=(xpyp) xp=3cos(β) yp=3sin(β) Let PA2=(xpxa)2+(ypya)2

 

PA21=[3cos(β)2cos(036011)]2+[3sin(β)2sin(036011)]2=1312[cos(β)cos(036011)+sin(β)sin(036011)]PA22=[3cos(β)2cos(136011)]2+[3sin(β)2sin(136011)]2=1312[cos(β)cos(136011)+sin(β)sin(136011)]PA23=[3cos(β)2cos(236011)]2+[3sin(β)2sin(236011)]2=1312[cos(β)cos(236011)+sin(β)sin(236011)]PA211=[3cos(β)2cos(1036011)]2+[3sin(β)2sin(1036011)]2=1312[cos(β)cos(1036011)+sin(β)sin(1036011)]

 

PA21+PA22+PA23++PA211=111312{cos(β)(cos(036011)+cos(136011)+cos(236011)++cos(1036011)=0)+sin(β)(sin(036011)+sin(136011)+sin(236011)++sin(1036011))=0}=111312(cos(β)0+sin(β)0)=1113120=1113=143

 

PA21+PA22++PA211=143

 

laugh

Jan 25, 2019
 #1
avatar+776 
+5
 #2
avatar+6251 
+1
Jan 25, 2019

1 Online Users