Ok, got it. The diagonal of the square is an angle bisector, which means that ADB = 45 degrees. Using a little common sense, ADE is an angle bisector as well. How I figured this out was if the angle wasn't equal on both sides, then the square sides would overlap. So ADE = 22.5 degrees. I used trig on this part, but Tan 22.5 = 0.41421356237 about. So then I got a suspicion, so I plugged in \(\sqrt 2 -1\) into the calculator, and I got the same answer. So the answer is \(\sqrt 2 -1\) , which you need to find the sum, so 2 + 1 = 3. Sorry my method is a little unorthodox, but it's the best I could come up with. I tried doing something with the angle bisector theorem, and I got \(\frac {1}{\sqrt2} = \frac{AE}{EB}\), but I couldn't get any further than that.
Hope this helps!