Questions   
Sort: 
 #3
avatar+26387 
+3
May 7, 2019
 #1
avatar+26387 
+4

Trigonometry

 

\(\begin{array}{|rcll|} \hline \tan{\theta} &=& \lambda\ \tan(A-\theta) \\ \boxed{\tan{\theta}=\dfrac{\sin(\theta)}{\cos(\theta)} \\ \tan(A-\theta) = \dfrac{\sin(A-\theta)}{\cos(A-\theta)} } \\ \dfrac{\sin(\theta)}{\cos(\theta)} &=& \lambda\ \left(\dfrac{\sin(A-\theta)}{\cos(A-\theta)} \right) \\ \boxed{ \sin(A-\theta) = \sin(A)\cos(\theta)-\cos(A)\sin(\theta) \\ \cos(A-\theta) = \cos(A)\cos(\theta)+\sin(A)\sin(\theta) } \\ \dfrac{\sin(\theta)}{\cos(\theta)} &=& \lambda\ \left(\dfrac{\sin(A)\cos(\theta)-\cos(A)\sin(\theta)} {\cos(A)\cos(\theta)+\sin(A)\sin(\theta)} \right) \\ \sin(\theta) \Big(\cos(A)\cos(\theta)+\sin(A)\sin(\theta) \Big) &=& \lambda\ \cos(\theta) \Big(\sin(A)\cos(\theta)-\cos(A)\sin(\theta) \Big) \\ \cos(A)\sin(\theta)\cos(\theta)+ \sin(A)\sin^2(\theta) &=& \lambda\ \cos^2(\theta)\sin(A)-\lambda\ \cos(A)\sin(\theta)\cos(\theta) \\ (\lambda+1)\cos(A)\sin(\theta)\cos(\theta) &=& \lambda\ \cos^2(\theta)\sin(A)-\sin(A)\sin^2(\theta) \\ \boxed{ \cos^2(\theta) = 1-\sin^2(\theta) } \\ (\lambda+1)\cos(A)\sin(\theta)\cos(\theta) &=& \lambda\ \Big(1-\sin^2(\theta) \Big) \sin(A)-\sin(A)\sin^2(\theta) \\ (\lambda+1)\cos(A)\sin(\theta)\cos(\theta) &=& \lambda\ \sin(A)-(\lambda+1) \sin(A)\sin^2(\theta) \\ (\lambda+1)\cos(A)\sin(\theta)\cos(\theta)+(\lambda+1) \sin(A)\sin^2(\theta) &=& \lambda\ \sin(A) \\ (\lambda+1)\Big( \cos(A)\sin(\theta)\cos(\theta)+\sin(A)\sin^2(\theta) \Big) &=& \lambda\ \sin(A) \\ \boxed{\sin(\theta)\cos(\theta)=\dfrac{\sin(2\theta)}{2} \\ \sin^2(\theta) = \dfrac{1-\cos(2\theta)}{2} } \\ (\lambda+1)\Big( \cos(A)\dfrac{\sin(2\theta)}{2}+\sin(A) \Big(\dfrac{1-\cos(2\theta)}{2}\Big) \Big) &=& \lambda\ \sin(A) \\ (\lambda+1)\Big( \cos(A)\sin(2\theta)+\sin(A) \Big( 1-\cos(2\theta)\Big) \Big) &=& 2\lambda\ \sin(A) \\ (\lambda+1)\Big( \cos(A)\sin(2\theta)-\sin(A)\cos(2\theta) + \sin(A) \Big) &=& 2\lambda\ \sin(A) \\ \boxed{ \cos(A)\sin(2\theta)-\sin(A)\cos(2\theta) = \sin(2\theta-A) } \\ (\lambda+1)\Big( \sin(2\theta-A) + \sin(A) \Big) &=& 2\lambda\ \sin(A) \\ (\lambda+1)\sin(2\theta-A) +(\lambda+1)\sin(A) &=& 2\lambda\ \sin(A) \\ (\lambda+1)\sin(2\theta-A) &=& 2\lambda\ \sin(A)-(\lambda+1)\sin(A) \\ (\lambda+1)\sin(2\theta-A) &=& 2\lambda\ \sin(A)-\lambda\ \sin(A)- \sin(A) \\ (\lambda+1)\sin(2\theta-A) &=& \lambda\ \sin(A)- \sin(A) \\ (\lambda+1)\sin(2\theta-A) &=& (\lambda -1) \sin(A)\\ \mathbf{(\lambda -1) \sin(A)} &=& \mathbf{(\lambda+1)\sin(2\theta-A)} \\ \hline \end{array}\)

 

laugh

May 7, 2019
 #2
avatar+6251 
0
May 7, 2019
May 6, 2019

1 Online Users

avatar