Questions   
Sort: 
 #2
avatar+26387 
+3

What is the value of the sum\( \dfrac {1}{1\cdot 3} + \dfrac {1}{3\cdot 5} + \dfrac {1}{5\cdot 7} + \dfrac {1}{7\cdot 9} + \cdots + \dfrac {1}{199\cdot 201}\)?

Express your answer as a fraction in simplest form.

 

\(\begin{array}{rcll} && \dfrac{1}{1*3} + \dfrac{1}{3*5} + \dfrac{1}{5*7}+ \dfrac{1}{7*9}+\ldots+\dfrac{1}{199*201} \\ &=& \dfrac{1}{1*3} + \dfrac{1}{3*5} + \dfrac{1}{5*7}+ \dfrac{1}{7*9}+\ldots+\dfrac{1}{(2n-1)(2n+1)} \\ \hline && \dfrac{1}{(2n-1)(2n+1)} = \dfrac12\left( \dfrac{1}{2n-1} - \dfrac{1}{2n+1} \right) \\ && \dfrac{1}{1*3} = \dfrac12\left( \dfrac{1}{1} - \dfrac{1}{3} \right) \\ && \dfrac{1}{3*5} = \dfrac12\left( \dfrac{1}{3} - \dfrac{1}{5} \right) \\ && \dfrac{1}{5*7} = \dfrac12\left( \dfrac{1}{5} - \dfrac{1}{7} \right) \\ && \dfrac{1}{7*9} = \dfrac12\left( \dfrac{1}{7} - \dfrac{1}{9} \right) \\ && \ldots \\ && \dfrac{1}{199*201} = \dfrac12\left( \dfrac{1}{199} - \dfrac{1}{201} \right) \\ \hline &=& \dfrac12\left( \dfrac{1}{1} - \dfrac{1}{3} \right) + \dfrac12\left( \dfrac{1}{3} - \dfrac{1}{5} \right) + \dfrac12\left( \dfrac{1}{5} - \dfrac{1}{7} \right) + \dfrac12\left( \dfrac{1}{7} - \dfrac{1}{9} \right)+\ldots+\dfrac12\left( \dfrac{1}{199} - \dfrac{1}{201} \right) \\ &=& \dfrac12\left( \dfrac{1}{1} - \underbrace{\dfrac{1}{3} + \dfrac{1}{3}}_{=0} - \underbrace{\dfrac{1}{5}+\dfrac{1}{5}}_{=0} - \underbrace{\dfrac{1}{7} + \dfrac{1}{7}}_{=0} - \underbrace{\dfrac{1}{9}+ \dfrac{1}{9}}_{=0} +\ldots- \underbrace{\dfrac{1}{199}+\dfrac{1}{199}}_{=0} - \dfrac{1}{201} \right) \\ &=& \dfrac12\left( \dfrac{1}{1} - \dfrac{1}{201} \right) \\ &=& \dfrac12\left( 1 - \dfrac{1}{201} \right) \\ &=& \dfrac12\left( \dfrac{201-1}{201} \right) \\ &=& \dfrac12\left( \dfrac{200}{201} \right) \\ &=& \dfrac{100}{201} \\ \end{array}\)

 

laugh

Jul 10, 2019
 #7
avatar+26387 
+1

What is the sum of the following sequence:
\(1\cdot 2\cdot 3\cdot 4\cdot 5 + 2\cdot 3\cdot 4\cdot 5\cdot 6 + 3\cdot 4\cdot 5\cdot 6\cdot 7 + 4\cdot 5\cdot 6\cdot 7\cdot 8 +\ldots + 996\cdot 997\cdot 998\cdot 999\cdot 1000\).

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ 1\cdot 2\cdot 3\cdot 4\cdot 5 + 2\cdot 3\cdot 4\cdot 5\cdot 6 + 3\cdot 4\cdot 5\cdot 6\cdot 7 + 4\cdot 5\cdot 6\cdot 7\cdot 8 +\ldots + 996\cdot 997\cdot 998\cdot 999\cdot 1000 } \\ &=& \sum \limits_{k=1}^{996} k(k+1)(k+2)(k+3)(k+4) \\ &=& \sum \limits_{k=1}^{996} k^5 + 10 k^4 + 35 k^3 + 50 k^2 + 24 k \\ &=& \sum \limits_{k=1}^{996} k^5 + 10\sum \limits_{k=1}^{996} k^4 + 35 \sum \limits_{k=1}^{996}k^3 + 50\sum \limits_{k=1}^{996} k^2 + 24\sum \limits_{k=1}^{996} k \\ && \boxed{ \sum \limits_{k=1}^{n} k^1= \dfrac12 n^2 + \dfrac12 n^1 \\ \sum \limits_{k=1}^{n} k^2= \dfrac13 n^3 + \dfrac12 n^2 + \dfrac16 n^1 \\ \sum \limits_{k=1}^{n} k^3= \dfrac14 n^4 + \dfrac12 n^3 + \dfrac14 n^2 \\ \sum \limits_{k=1}^{n} k^4= \dfrac15 n^5 + \dfrac12 n^4 + \dfrac13 n^3 -\dfrac1{30} n^1 \\ \sum \limits_{k=1}^{n} k^5= \dfrac16 n^6 + \dfrac12 n^5 + \dfrac{5}{12} n^4 -\dfrac1{12} n^2 } \\ &=& \dfrac16 996^6 + \dfrac12 996^5 + \dfrac{5}{12} 996^4 -\dfrac1{12} 996^2 + 10\left(\dfrac15 996^5 + \dfrac12 996^4 + \dfrac13 996^3 -\dfrac1{30} 996 \right) \\ &&+ 35\left( \dfrac14 996^4 + \dfrac12 996^3 + \dfrac14 996^2 \right) + 50\left( \dfrac13 996^3 + \dfrac12 996^2 + \dfrac16 996 \right) \\ &&+ 24\left( \dfrac12 996^2 + \dfrac12 996 \right) \\ &=& \dfrac16 996^6 \\ && + \dfrac12 996^5 + \dfrac{10}5 996^5 \\ && + \dfrac{50}{3} 996^4+ \dfrac{10}2 996^4+ \dfrac{35}4 996^4 \\ && + \dfrac{10}3 996^3+ \dfrac{35}2 996^3+ \dfrac{50}3 996^3 \\ && -\dfrac1{12} 996^2 + \dfrac{35}4 996^2 + \dfrac{50}2 996^2 + \dfrac{24}2 996^2 \\ && -\dfrac{10}{30} 996 + \dfrac{50}6 996 + \dfrac{24}2 996 \\ &=& \dfrac16 996^6 + \dfrac{5}{2}\cdot 996^5 + \dfrac{85}{6} 996^4 + \dfrac{75}2 996^3 + \dfrac{274}6 996^2 +20\cdot 996 \\ &=& \mathbf{165170830829004000} \\ \hline \end{array}\)

 

laugh

Jul 10, 2019

2 Online Users

avatar