Questions   
Sort: 
 #1
avatar+26400 
+4
Aug 5, 2019
 #1
avatar+26400 
+2

Let P be the intersection point of the line through points D = (1, 1, 2) and E = (2, 3, 4) 

with the plane through A = (0,1,1), B = (1,1,0) and C = (1,0,3).

What is P?

 

\(\begin{array}{|rcl|rclrcl|} \hline \text{plane} &&& \text{line} \\ \hline && A = \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix} \qquad C = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix} \qquad & && D = \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix} \qquad E = \begin{pmatrix} 2\\ 3\\ 4 \end{pmatrix} \\ \vec{x} &=& \vec{B}+s(\vec{A}-\vec{B})+t(\vec{C}-\vec{B}) & \vec{x} &=& \vec{D}+r(\vec{E}-\vec{D}) \\\\ \vec{x} &=&\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix} +s\left(\begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}-\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}\right) +t\left(\begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}-\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}\right) & \vec{x} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix} +r\left(\begin{pmatrix} 2\\ 3\\ 4 \end{pmatrix}-\begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}\right) \\\\ \vec{x} &=&\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}+s\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}+t\begin{pmatrix} 0\\ -1\\ 3 \end{pmatrix} & \vec{x} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}+r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix}\\ \hline \end{array} \)

\(\begin{array}{|rcll|} \hline \vec{x} =\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}+s\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}+t\begin{pmatrix} 0\\ -1\\ 3 \end{pmatrix} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}+r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} \\\\ \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}+s\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}+t\begin{pmatrix} 0\\ -1\\ 3 \end{pmatrix} &=&\begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}+r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} \\\\ s\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}+t\begin{pmatrix} 0\\ -1\\ 3 \end{pmatrix} -r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}-\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix} \\\\ \mathbf{ s\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}+t\begin{pmatrix} 0\\ -1\\ 3 \end{pmatrix} -r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} } &=& \mathbf{ \begin{pmatrix} 0\\ 0\\ 2 \end{pmatrix} } \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (1) & -s-r &=& 0 \\ & \mathbf{r} &=& \mathbf{ -s} \\ \hline (2) & -t-2r &=& 0 \\ & t &=& -2r \\ & t &=& -2(-s) \\ & \mathbf{t} &=& \mathbf{2s} \\ \hline (3) & s+3t-2r &=& 2 \\ & s +3(2s)-2(-s) &=& 2 \\ & s+6s+2s &=& 2 \\ & 9s &=& 2 \\ & \mathbf{s} &=& \mathbf{\dfrac{2}{9}} \\\\ & t &=& 2s \\ & t &=& 2\left(\dfrac{2}{9}\right) \\ &\mathbf{t} &=& \mathbf{\dfrac{4}{9}} \\\\ & r &=& -s \\ & r &=& -\left(\dfrac{2}{9}\right)\\ &\mathbf{r} &=& \mathbf{- \dfrac{2}{9} } \\ \hline \end{array}\)

 

\(\mathbf{\vec{P}=\ ?}\)

\(\begin{array}{|rcll|} \hline \vec{x} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}+r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} \\\\ \vec{P} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}- \dfrac{2}{9}\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} \\\\ \vec{P} &=& \begin{pmatrix} 1-\dfrac{2}{9}\\ 1-\dfrac{4}{9}\\ 2-\dfrac{4}{9} \end{pmatrix} \\\\ \mathbf{\vec{P}} &=& \mathbf{\begin{pmatrix} \dfrac{7}{9}\\ \dfrac{5}{9}\\ \dfrac{14}{9} \end{pmatrix} } \\ \hline \end{array} \)

 

laugh

Aug 5, 2019
 #1
avatar+6252 
+1
Aug 5, 2019
 #14
avatar+118724 
0
Aug 5, 2019
 #4
avatar+118724 
0
Aug 5, 2019
Aug 4, 2019
 #2
avatar+937 
+1
Aug 4, 2019
 #17
avatar+2236 
+3

... UNfortunately....we get a lot of folks posting stuf which is UNclear!   Parentheses and brackets are NECESSARY to get correct answers to postings (and not make an engineering mistake that kills people !)

------

I agree that the postings from many students are unclear. It’s obvious these students lack the prerequisites for the posted questions; including an understanding of basic mathematical hierarchical conventions. Without these prerequisites, they will not understand where to place parenthetical operators, or they believe them to be unnecessary even when included in the original question.

 

These deficits point to an apparent flaw in lower-level education of students for these hierarchical conventions. Based on my observations, the debate on these conventions are usually by second-year college/university students and reaches a crescendo every other year. It may be because the crescendo carries over to first year students, that when they become second-year students it’s mostly a moot point and last year’s news.indecision 

 

As for engineers, especially those who have the credentials and experience to create or certify anything that might cause death to a population, or the destruction of expensive science experiments, it’s reasonable to assume they are well versed on such hierarchies. In addition, all mathematics and algorithms are peer reviewed and subjected to tests to catch transient math and logic errors.  This process works well, as indicated by the rare failure. Most failures, when they occur, are usually traceable to a sequence of errors where no single event by itself would have caused the failure.

 

In modern computing, redundant uses of parenthetical operators are a trivial matter, but in the early days of computerized control, mnemonic and variable storage space was always at a premium and maxed-out, so superfluous parenthetical operators were not an option. 

 

The article below gives insight to the computer related testing and contingency plans in use for the Apollo 11 moon landing.

 

 https://arstechnica.com/science/2019/07/no-a-checklist-error-did-not-almost-derail-the-first-moon-landing/

 

I think it is fascinating we could land men on the moon, collect samples, and bring everything back intact, in an era when the population standard thought of computers and space travel as mostly science fiction. It’s a tribute to the hierarchy of human intelligence—never forgetting the occasional genetically enhanced chimp.Remember, we chimps made it to space first.

 

 

GA  

Aug 4, 2019
 #2
avatar+937 
+1
Aug 4, 2019
 #2
avatar+937 
0
Aug 4, 2019

3 Online Users

avatar