Questions   
Sort: 
 #1
avatar+449 
+2
Nov 14, 2019
 #8
avatar+9491 
+3

https://en.wikipedia.org/wiki/Euclidean_algorithm

 

Examples:

 

The greatest common divisor of  6  and  9

=   gcd(6, 9)   ←The difference between 6 and 9 is  3, so replace the larger number, 9, with 3.

=   gcd(6, 3)   ←The difference between 6 and 3 is  3, so replace the larger number, 6, with 3.

=   gcd(3, 3)   ←Now the two numbers are the same. So we stop.

=   3

 

The greatest common divisor of  8  and  12

=   gcd(8, 12)

=   gcd(8, 4)

=   gcd(4, 4)

=   4

 

The greatest common divisor of  24  and  81

=   gcd(24, 81)

=   gcd(24, 57)

=   gcd(24, 33)

=   gcd(24, 9)

=   gcd(15, 9)

=   gcd(6, 9)

=   gcd(6, 3)

=   gcd(3, 3)

=   3

 

To calculate the greatest common divisor of  3  different numbers, we can use this prinicple:

 

gcd(a, b, c)   =   gcd( a, gcd(b, c) )

 

So we apply the Euclidean algorithm twice. Let's see if this works!

 

gcd(9118, 12173, 33182)   =   gcd( 9118, gcd(12173, 33182) )

 

First, use the Euclidean algorithm to find the inner piece.

 

=   gcd(12173, 33182)

=   gcd(12173, 21009)

=   gcd(12173, 8836)

=   gcd(3337, 8836)

=   gcd(3337, 5499)

=   gcd(3337, 2162)

=   gcd(1175, 2162)

=   gcd(1175, 987)

=   gcd(188, 987)

=   gcd(188, 799)

=   gcd(188, 611)

=   gcd(188, 423)

=   gcd(188, 235)

=   gcd(188, 47)

=   gcd(141, 47)

=   gcd(94, 47)

=   gcd(47, 47)

=   47

 

Next, use the Euclidean algorithm to find the outer piece.

 

gcd( 9118, gcd(12173, 33182) )

=   gcd(9118, 47)

=   gcd(9071, 47)

=   gcd(9024, 47)

.

.   *Note that   9118 - 47*193  =  47   so we would have to subtract  47  a total of  193  times.*

.

=   gcd(141, 47)

=   gcd(94, 47)

=   gcd(47, 47)

=   47

 

This agrees with Melody's answer!!

Nov 14, 2019
 #1
avatar
0
Nov 14, 2019

1 Online Users