Questions   
Sort: 
 #3
avatar+26367 
+1

A series is given by
\(\dfrac{1}{7^1}+\dfrac{2}{7^2}+\dfrac{3}{7^3}+\dfrac{4}{7^4}+\dfrac{5}{7^5}+\cdots \).

 

This is a infinite arithmetico-geometric sequence.

In general: \({\color{red}a}{\color{blue}b }+(a+d){\color{blue}br }+{\color{red}(a+2d)}{\color{blue}br^2 }+{\color{red}(a+3d)}{\color{blue}br^3 }+\cdots + {\color{red}\Big(a+(n-1)d \Big)}{\color{blue}br^{n-1} } + \cdots \)

 

\(\begin{array}{|lrcll|} \hline \text{arithmetical sequence:}\quad 1+2+3+4+5+\ldots \\ {\color{red}1}+({\color{red}1}+1*{\color{orange}1})+({\color{red}1}+2*{\color{orange}1})+({\color{red}1}+3*{\color{orange}1})+\dotsb+\Big({\color{red}1}+(n-1)*{\color{orange}1}\Big)+\dotsb \\ \boxed{a={\color{red}1},\ d={\color{orange}1} \text{ is the common difference} } \\\\ \text{geometric series:}\quad \frac{1}{7^1}+\frac{1}{7^2}+ \frac{1}{7^3}+ \frac{1}{7^4}+ \frac{1}{7^5}+\cdots \\ {\color{blue}\frac{1}{7} } +{\color{blue}\frac{1}{7} }\left({\color{green}\frac{1}{7}}\right)^1 +{\color{blue}\frac{1}{7} }\left({\color{green}\frac{1}{7}}\right)^2 +{\color{blue}\frac{1}{7} }\left({\color{green}\frac{1}{7}}\right)^3 +\dotsb +{\color{blue}\frac{1}{7} }\left({\color{green}\frac{1}{7}}\right)^{n-1} +\dotsb\\ \boxed{ b={\color{blue}\frac{1}{7} },\ r={\color{green}\frac{1}{7}}\ \text{ is the common ratio} } \\ \hline \end{array} \)

 

Formula:
sum of a infinite arithmetico-geometric sequence

\(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+d\left( \dfrac{r}{1-r} \right) \Bigg)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+d\left( \dfrac{r}{1-r} \right) \Bigg)} \\\\ && \boxed{a={\color{red}1},\ d={\color{orange}1} \text{ is the common difference} } \\ &&\boxed{ b={\color{blue}\frac{1}{7} },\ r={\color{green}\frac{1}{7}}\ \text{ is the common ratio} } \\\\ s &=& \left(\dfrac{{\color{blue}\frac{1}{7}} }{1-{ \color{green}\frac{1}{7}} }\right) \Bigg( {\color{red}1} + { \color{orange}1} \left( \dfrac{ {\color{green}\frac{1}{7} }}{1-{\color{green}\frac{1}{7}} } \right) \Bigg) \\\\ s &=& \frac{1}{7}*\frac{7}{6} \left( {\color{red}1} + \frac{1}{7}*\frac{7}{6} \right) \\\\ s &=& \frac{1}{6} \left( {\color{red}1} + \frac{1}{6} \right) \\\\ s &=& \frac{1}{6} *\frac{7}{6} \\\\ \mathbf{s} &=& \mathbf{\frac{7}{36}} \\ \hline \end{array}\)

 

\(\mathbf{\dfrac{1}{7^1}+\dfrac{2}{7^2}+\dfrac{3}{7^3}+\dfrac{4}{7^4}+\dfrac{5}{7^5}+\cdots} = \mathbf{\dfrac{7}{36}}\)

 

laugh

Feb 21, 2020
 #2
avatar
0
Feb 21, 2020
 #1
avatar+128474 
+1

[ Because  of  the nasty roots that we will find in this problem....I leaned heavily on WolframAlpha for  most of the computations ] 

 

Note that   AB    = BX   so.....AX   = 28

 

Using the Law of Cosines    we have

BC^2  = AB^2  + AC^2 - 2(AC*AB) cos CAX

15^2  =  14^2  +13^2  - 2(13 * 14) cos CAX

Solving for the cos CAX  we  get  that  cos (CAX)  = 5/13

So....the sin of CAX =  12/13 

 

And we can find   CX  using the Law of Cosines  again

CX^2  = AC^2  + AX^2  - 2(AC * AX) cos CAX

CX^2  = 13^2  + 28^2  - 2(13 * 28) (5/13)

Solving this for  CX  gives us  CX  =   √673

 

And again  we can find the cosine of angle  BCX  as

BX^2  =  BC^2  + CX^2  - 2(BC * CX) cos BCX

14^2  = 15^2  + 673  -2 ( 15 * √673) cosBCX 

Solving this  for  cos BCX gives  us   117/ [ 5 √673 ]

 

And sin BCX   =  √  [  1   - [ 117/ [ 5 √673 ] ]^2 ]    =   56 / [ 5√673]

 

Connect  BD

 

Since  quadrilateral ABDC  is inscribed in a circle....angles  CAB  and   CDB are supplemental....so the have the same sines  =12/13

 

So.....using the Law of Sines

BC / sin  CDB  =   BD  /sin BCX

15 / (12/13)  = BD  / [  56 / [ 5√673] ] 

Solving this gives that  BD   =  182  / √673

 

 

Finally.....using the Law of Cosines we  can  find   CD  as folllows

 

BD^2  =   BC^2  + CD^2   -  2 (BC * CD) cos BCX

Let  CD   = x   and we have that

182^2 / 673   =   15^2 + x^2  -  2 (15 * x)*(117/ [5sqrt (673)] )

 

Solving this for x  = CD  gives us two  values

 

CD  = 281 / √673  ≈  10.83   or      

 

CD  =  421 / √673  ≈  16.23

 

But     BC  =  15   and is clearly  greater than CD

 

So   CD =   281 / √673   ≈  10.83   is  the  correct solution

 

 

cool cool cool

Feb 21, 2020
 #2
avatar
0
Feb 21, 2020

5 Online Users

avatar
avatar