Questions   
Sort: 
 #2
avatar+33616 
0
Apr 20, 2020
 #1
avatar+26382 
+2

Find the 3 smallest positive x-intercepts of the graph of \(y = \cos(12x) + \cos(14x)\) and list them in increasing order.

 

Formula: \(\boxed{\cos(x) + \cos(y) = 2\cos\left(\dfrac{x+y}{2}\right)\cos\left(\dfrac{x-y}{2}\right) }\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\cos(12x) + \cos(14x)} \\ &=& \cos(14x) + \cos(12x) \\ &=& 2\cos\left(\dfrac{14x+12x}{2}\right)\cos\left(\dfrac{14x-12x}{2}\right) \\ &=& 2\cos\left(\dfrac{26x}{2}\right)\cos\left(\dfrac{2x}{2}\right) \\ &=& \mathbf{2\cos(13x)\cos(x)} \\ \hline \end{array}\)

 

 x-intercepts of the graph

\(\begin{array}{|rcll|} \hline \mathbf{2\cos(13x)\cos(x)} &=& 0 \quad | \quad : 2 \\ \cos(13x)\cos(x) &=& 0 \\ \hline \mathbf{\cos(x)} &=& \mathbf{0} \\ x &=& \pm \arccos(0) +2k\pi \qquad k\in \mathbb{Z} \\ x &=& \pm \dfrac{\pi}{2} +2k\pi \\\\ x &=& \mathbf{+} \dfrac{\pi}{2}+2k\pi \qquad k = 0 \\ x &=& + \dfrac{\pi}{2} \\ \mathbf{x} &=& \mathbf{1.57079632679}\ \text{rad} \\\\ x &=& \mathbf{-} \dfrac{\pi}{2} +2k\pi \qquad k = 1 \\ x &=& - \dfrac{\pi}{2} +2 \pi \\ \mathbf{x} &=& \mathbf{4.71238898038}\ \text{rad} \\ \hline \mathbf{\cos(13x)} &=& \mathbf{0} \\ 13x &=& \pm \arccos(0) +2k\pi \qquad k\in \mathbb{Z} \\ 13x &=& \pm \dfrac{\pi}{2} +2k\pi \\\\ 13x &=& \mathbf{+}\dfrac{\pi}{2} +2k\pi \\ x &=& \dfrac{\pi}{2*13}+\dfrac{2\pi k}{13} \qquad k = 0 \\ x &=& \dfrac{\pi}{26} \\ \mathbf{x} &=& \mathbf{0.12083048668}\ \text{rad} \\\\ x &=& \mathbf{+}\dfrac{\pi}{26}+\dfrac{2\pi k}{13} \qquad k = 1 \\ x &=& \dfrac{\pi}{26}+\dfrac{2\pi}{13} \\ x &=& \dfrac{5\pi}{26} \\ \mathbf{x} &=& \mathbf{0.60415243338}\ \text{rad} \\\\ 13x &=& \mathbf{-}\dfrac{\pi}{2} +2k\pi \\ x &=& -\dfrac{\pi}{2*13}+\dfrac{2\pi k}{13} \qquad k = 1 \\ x &=& -\dfrac{\pi}{26}+\dfrac{2\pi}{13} \\ x &=& \dfrac{3\pi}{26} \\ \mathbf{x} &=& \mathbf{0.36249146003}\ \text{rad} \\ \hline \end{array}\)


The 3 smallest positive x-intercepts of the graph:
\(\mathbf{\dfrac{\pi}{26} },\ \mathbf{\dfrac{3\pi}{26} },\ \mathbf{\dfrac{5\pi}{26} } \)

 

laugh

Apr 20, 2020
 #2
avatar+26382 
+4

A mathematician works for \(t\) hours per day and solves \(p\) problems per hour, where \(t\) and \(p\) are positive integers and \(1 < p < 20\) .
One day, the mathematician drinks some coffee and discovers that he can now solve \(3p+7\) problems per hour.
In fact, he only works for \(t-4\) hours that day, but he still solves twice as many problems as he would in a normal day.
How many problems does he solve the day he drinks coffee?

 

Formula: \((3p+7)(t-4) = 2tp\)

 

\(\begin{array}{|rcll|} \hline (3p+7)(t-4) &=& 2tp \\ 3pt-12p+7t-28 &=& 2tp \\ pt-12p+7t-28 &=& 0 \\ t(p+7)-12p-28 &=& 0 \\ t(p+7)&=& 12p+28 \\ t(p+7)&=& 4(3p+7) \\ t &=& 4\left(\dfrac{3p+7}{p+7}\right) \\ t &=& 4\left(\dfrac{3p+21-14}{p+7}\right) \\ t &=& 4\left(\dfrac{3(p+7)-14}{p+7}\right) \\ \mathbf{t} &=& \mathbf{4\left(3-\dfrac{14}{p+7}\right)} \\ \hline \end{array} \)

 

\(t\) and \(p\) are positive integers

\(\begin{array}{|rcll|} \hline \dfrac{14}{p+7} &=& 0 \qquad t > 0 \checkmark \\ \dfrac{14}{p+7} &=& 1 \qquad t > 0 \checkmark \\ \dfrac{14}{p+7} &=& 2 \qquad t > 0 \checkmark \\ \dfrac{14}{p+7} &=& 3 \qquad t = 0 \\ \dfrac{14}{p+7} &>& 3 \qquad t < 0 \\ \hline \end{array} \)

 

\(\mathbf{p=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{14}{p+7}} &=& \mathbf{0} \\ 14 &=& 0(p+7) \\ 14 &=& 0 \qquad | \text{ does not yield any value of p.} \\ \hline \end{array} \\ \begin{array}{|rcll|} \hline \mathbf{\dfrac{14}{p+7}} &=& \mathbf{1} \\ 14 &=& 1(p+7) \\ 14 &=& p+7 \\ \mathbf{p} &=& \mathbf{7}\ \checkmark \\ \hline \end{array} \\ \begin{array}{|rcll|} \hline \mathbf{\dfrac{14}{p+7}} &=& \mathbf{2} \\ 14 &=& 2(p+7) \\ 14 &=& 2p+14 \\ 0 &=& 2p \\ p &=& 0\qquad 1 < p < 20,\ \text{ no solution, p > 1!} \\ \hline \end{array}\)

 

\(\mathbf{t=\ ?}\)

\(\begin{array}{|rcll|} \hline t &=& 4\left(\dfrac{3p+7}{p+7}\right) \quad | \quad \mathbf{p=7} \\ t &=& 4\left(\dfrac{3*7+7}{7+7}\right) \\ t &=& 4\left(\dfrac{4*7}{2*7}\right) \\ t &=& 4\left(\dfrac{4 }{2 }\right) \\ t &=& 4*2 \\ \mathbf{t} &=& \mathbf{8} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline 2tp &=& 2*8*7 \\ \mathbf{2tp} &=& \mathbf{112} \\ \hline \end{array}\)

 

The mathematician solved 112 problems the day he drank coffee.

 

laugh

Apr 20, 2020

3 Online Users

avatar
avatar