Questions   
Sort: 
 #4
avatar+26401 
+1

Compute  
\(\large \sin(10^\circ) \sin(30^\circ) \sin(50^\circ) \sin(70^\circ)\)


Formula:
\(\begin{array}{|lrcll|} \hline (1) & \cos(x-y) &=& \cos(x)\cos(y)+\sin(x)\sin(y) \\ (2) & \cos(x+y) &=& \cos(x)\cos(y)-\sin(x)\sin(y)\\ \hline (1)-(2): & \mathbf{2\sin(x)\sin(y)} &=& \mathbf{\cos(x-y)-\cos(x+y)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \sin(10^\circ) \sin(30^\circ) \sin(50^\circ) \sin(70^\circ) \quad | \quad \sin(30^\circ)=\dfrac{1}{2} \\ &=& \dfrac{1}{2}* \sin10(^\circ) \sin(70^\circ) \sin(50^\circ) \\ \hline \\ && \quad 2\sin(x)\sin(y)=\cos(x-y)-\cos(x+y) \\ && \quad 2\sin(10^\circ)\sin(70^\circ)=\cos(60^\circ)-\cos(80^\circ) \quad | \quad \cos(60^\circ)=\dfrac{1}{2} \\ &&\quad 2\sin(10^\circ)\sin(70^\circ)=\dfrac{1}{2}-\cos(80^\circ) \quad | \quad \cos(80^\circ)=\cos(90^\circ-10^\circ)=\sin(10^\circ) \\ &&\quad 2\sin(10^\circ)\sin(70^\circ)=\dfrac{1}{2}-\sin(10^\circ) \\ &&\quad \mathbf{\sin(10^\circ)\sin(70^\circ)=\dfrac{1}{4}-\dfrac{1}{2}*\sin(10^\circ)} \\ \\ \hline &=& \dfrac{1}{2}\left( \dfrac{1}{4}-\dfrac{1}{2}*\sin(10^\circ) \right) \sin(50^\circ) \\ &=& \dfrac{1}{8}\sin(50^\circ)-\dfrac{1}{4}*\sin(10^\circ)\sin(50^\circ) \\ \hline \\ && \quad 2\sin(x)\sin(y)=\cos(x-y)-\cos(x+y) \\ && \quad 2\sin(10^\circ)\sin(50^\circ)=\cos(40^\circ)-\cos(60^\circ) \quad | \quad \cos(60^\circ)=\dfrac{1}{2} \\ && \quad 2\sin(10^\circ)\sin(50^\circ)=\cos(40^\circ)-\dfrac{1}{2} \quad | \quad \cos(40^\circ)=\cos(90^\circ-50^\circ)=\sin(50^\circ) \\ &&\quad 2\sin(10^\circ)\sin(50^\circ)=\sin(50^\circ)-\dfrac{1}{2} \\ &&\quad \mathbf{\sin(10^\circ)\sin(50^\circ)=\dfrac{1}{2}*\sin(50^\circ)-\dfrac{1}{4} } \\ \\ \hline &=& \dfrac{1}{8}\sin(50^\circ)-\dfrac{1}{4}*\left(\dfrac{1}{2}\sin(50^\circ)-\dfrac{1}{4}\right) \\ &=& \dfrac{1}{8}\sin(50^\circ)-\dfrac{1}{8}\sin(50^\circ)+\dfrac{1}{16} \\ &=& \mathbf{\dfrac{1}{16}} \\ \hline \end{array} \)

 

laugh

Jul 12, 2020
 #2
avatar+171 
+1
Jul 12, 2020

1 Online Users

avatar