If a 7-digit number 13ab45c is divisible by 792, what is b?
792=23∗32∗11
1.
13ab45c is divisible by 2, so c={2,4,6,8}
2.
13ab45c is divisible by 23=8, so 45c≡0(mod8)
c45c45c(mod8)≡0 ?2452no4454no6456yes8458no, so c=6
3.
13ab45c is divisible by 32=9, so 13ab456≡0(mod9)
1+3+a+b+4+5+6≡0(mod9)a+b+19≡0(mod9)|19≡1(mod9)a+b+1≡0(mod9)|−1a+b≡−1(mod9)a+b≡−1+9(mod9)a+b≡8(mod9)
a+b(mod9)=8 ?b→0123456789a↓00123456780112345678012234567801233456780123445678012345567801234566780123456778012345678801234567890123456780
, so (a,b)={(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(8,0),(8,9),(9,8)}
4.
13ab45c is divisible by 11, so 13ab456≡0(mod11)
1−3+a−b+4−5+6≡0(mod11)a−b+3≡0(mod11)|−3a−b≡−3(mod11)a−b≡−3+11(mod11)a−b≡8(mod11)
a−b(mod11)=8 ?b→0123456789a↓00109876543211010987654322101098765433210109876544321010987655432101098766543210109877654321010988765432101099876543210
, so (a,b)={(0,3),(1,4),(2,5),(3,6),(4,7),(5,8),(6,9),(8,0),(9,1)}
compare:
a+b(mod9)=8:(a,b)={(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(8,0),(8,9),(9,8)}a−b(mod11)=8:(a,b)={(0,3),(1,4),(2,5),(3,6),(4,7),(5,8),(6,9),(8,0),(9,1)}
,so a=8 and b=0
13ab45c=1380456check:1380456:792=1743
