Thanks Heureka,
Here is my contribution.
It is not much different from yours, but the explanation is maybe a little more different.
If a 7-digit number 13ab45c is divisible by 792, what is b?
\(792=8*9*11\)
For this number to be dividable by 8, the last 3 digits must be divisible by 8
456/8=57 no other digits will work so c=6
\(13ab45c\\ becomes\\ 13ab456\)
Now a number is divisible by 11 if
| (sum of even digits) - (sum of odd digits) | = multiple of 11
Sum of odd digits = 1+a+4+6 = 11+a
Sum of even digits = 3+b+5 = 8+b
absolute value of difference = | 11+a - 8-b | = |3+a-b |
so 3+a+b can be negative but it must be a multiple of 11
3+a-b = 11k where k is an integer.
\(-9\le a-b\le9\\ -6\le 3+a-b \le12\\ which\;\; means\\ 3+a-b=11\;\;or\;\;0\\ a-b=8\;\;or\;\;-3\\ a=8+b\;\;or \;\; a=-3+b\)
Now for a number to be divisible by 9, the sum of the digits must be a multiple of 9
so
\(1+3+a+b+4+5+6\\ =19+a+b\\\quad if\;\;a=8+b\;\;then\\ \\\quad =19+b+8+b\\\quad =27+2b\\ \quad b=0\;\;or\;\;9\\ b=9 \;\;doesn't \;\;work\\ so\;\; b=0,\;\;a=8 \; \text{is a possible solution}\\ ~\\ 1+3+a+b+4+5+6\\ =19+a+b\\\quad if\;\;a=-3+b\;\;then\\ \\\quad =19+b-3+b\\\quad =16+2b\\ \quad b=1,\;\;a=-2 \;\text{which is invalid}\)
If b=9 then a=17 or 6 17 is not good so
If b=9 a=-3+9=6
If b=0 a=8+0=8
So the number could be
1380456 or
1369456
So the number is
\(13ab45c= 13ab456 =1380456\\ a=8\\ b=0\\ c=6\)
LaTex:
-9\le a-b\le9\\ -6\le 3+a-b \le12\\ which\;\; means\\ 3+a-b=11\;\;or\;\;0\\ a-b=8\;\;or\;\;-3\\
a=8+b\;\;or \;\; a=-3+b
1+3+a+b+4+5+6\\ =19+a+b\\\quad if\;\;a=8+b\;\;then\\ \\\quad =19+b+8+b\\\quad =27+2b\\ \quad b=0\;\;or\;\;9\\
b=9 \;\;doesn't \;\;work\\
so\;\; b=0,\;\;a=8 \; \text{is a possible solution}\\
~\\
1+3+a+b+4+5+6\\ =19+a+b\\\quad if\;\;a=-3+b\;\;then\\ \\\quad =19+b-3+b\\\quad =16+2b\\
\quad b=1,\;\;a=-2 \;\text{which is invalid}