I think
\(z^3=-2(1+i) \)
just thinking about 1+i and where it lays on the complex plane.
I can see that the distance from the origin is sqrt2 and the angle with the positive x axis is pi/4
so this can be written as
\(z^3=-2*\sqrt2 * e^{\frac{\pi}{4}i}\\ z^3=-2^{\frac{3}{2}} * e^{\frac{\pi}{4}i}\\ z=-2^{\frac{3}{2}\cdot \frac{1}{3}} * e^{\frac{\pi}{4}i\cdot\frac{1}{3}}\\ z=-\sqrt{2} e^{\frac{\pi}{12}i}\\ \)
This is only one of the 3 cube roots, It is in the 3rd quadrant
the other two have angles of
\(\frac{\pi}{12}+\frac{2\pi}{3}=\frac{\pi}{12}+\frac{8\pi}{12}=\frac{9\pi}{12} =\frac{3\pi}{4} \\ and\\ \frac{\pi}{12}+\frac{4\pi}{3}=\frac{\pi}{12}+\frac{16\pi}{12}=\frac{17\pi}{12} \)
4th quad solution:
\(z=-\sqrt{2} e^{\frac{3\pi}{4}i}\\ z=-\sqrt{2} [cos(\frac{3\pi}{4})+isin(\frac{3\pi}{4})]\\ z=-\sqrt{2} [-\frac{1}{\sqrt2}+\frac{i}{\sqrt2}]\\ z=1-i \)
LaTex:
z^3=-2*\sqrt2 * e^{\frac{\pi}{4}i}\\
z^3=-2^{\frac{3}{2}} * e^{\frac{\pi}{4}i}\\
z=-2^{\frac{3}{2}\cdot \frac{1}{3}} * e^{\frac{\pi}{4}i\cdot\frac{1}{3}}\\
z=-\sqrt{2} e^{\frac{\pi}{12}i}\\