Thanks Loki and Heureka,
I went with a more straight forward (but not shorter) approach,
I just divided by (x+1) three times to find the coefficients.
\(f(x)=ax^5+bx^4+cx^3\\ f(x)+2=ax^5+bx^4+cx^3+2\\ [f(x)+2]\div(x+1)=[ax^5+bx^4+cx^3+2]\div(x+1)\\ \text{I did this by algebraic division and got a remainer of }-c+b-a+2\\ \text{The remainder must be 0 so}\\ -c+b-a+2=0\\ c=b-a+2 \)
So now I have
\(f(x)+2=ax^5+bx^4+(b-a+2)x^3+2\\ [f(x)+2]\div(x+1)\\\qquad=[ax^5+bx^4+(b-a+2)x^3+2]\div(x+1)\\ \qquad =ax^4+(b-a)x^3+2x^2-2x+2\\~\\ (ax^4+(b-a)x^3+2x^2-2x+2)\div(x+1)\\ \\\text{I did this by algebraic division and got a remainder of }6-b+2a\\ \text{The remainder must be 0 so}\\ 6-b+2a=0\\ b=6+2a\\~\\ (ax^4+(b-a)x^3+2x^2-2x+2)\div(x+1)\\ =(ax^4+(6+a)x^3+2x^2-2x+2)\div(x+1)\\ =ax^3+6x^2-4x+2 \)
\((ax^3+6x^2-4x+2)\div(x+1)\\ \\\text{I did this by algebraic division and got a remainder of }12-a\\ \text{The remainder must be 0 so}\\ a=12\\~\\ so\\ a=12\\ b=6+2a=30\\ c=b-a+2=30-12+2=20\\ so\\ f(x)=12x^5+30x^4+20x^3\)
----------------------------------------------------------------------------------------------------
LaTex:
f(x)=ax^5+bx^4+cx^3\\
f(x)+2=ax^5+bx^4+cx^3+2\\
[f(x)+2]\div(x+1)=[ax^5+bx^4+cx^3+2]\div(x+1)\\
\text{I did this by algebraic division and got a remainer of }-c+b-a+2\\
\text{The remainder must be 0 so}\\
-c+b-a+2=0\\
c=b-a+2
f(x)+2=ax^5+bx^4+(b-a+2)x^3+2\\
[f(x)+2]\div(x+1)\\\qquad=[ax^5+bx^4+(b-a+2)x^3+2]\div(x+1)\\
\qquad =ax^4+(b-a)x^3+2x^2-2x+2\\~\\
(ax^4+(b-a)x^3+2x^2-2x+2)\div(x+1)\\
\\\text{I did this by algebraic division and got a remainder of }6-b+2a\\
\text{The remainder must be 0 so}\\
6-b+2a=0\\
b=6+2a\\~\\
(ax^4+(b-a)x^3+2x^2-2x+2)\div(x+1)\\
=(ax^4+(6+a)x^3+2x^2-2x+2)\div(x+1)\\
=ax^3+6x^2-4x+2
(ax^3+6x^2-4x+2)\div(x+1)\\
\\\text{I did this by algebraic division and got a remainder of }12-a\\
\text{The remainder must be 0 so}\\
a=12\\~\\
so\\
a=12\\
b=6+2a=30\\
c=b-a+2=30-12+2=20\\
so\\
f(x)=12x^5+30x^4+20x^3