Questions   
Sort: 
 #1
avatar+26388 
+2

Assuming \(x\), \(y\), and \(z\) are positive real numbers satisfying
\(xy - z = 15\\ xz - y = 15\\ yz - x = 15\)
then, what is the value of \(xyz\)?

 

\(\begin{array}{|lrcll|} \hline (1) & xy - z &=& 15 \\ (2) & xz - y &=& 15 \\ (3) & yz - x &=& 15 \\ \hline (1)+(2)+(3):& (xy - z)+(xz - y)+(yz - x) &=& 45 \\ & \ldots \\ &\mathbf{ x+y+z } &=& \mathbf{ xy+xz+yz-45 } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline yz - x &=& 15 \\ \mathbf{x} &=& yz-15 \\ \hline xz-y &=& 15 \\ (yz-15)z-y &=& 15 \\ yz^2-15z-y &=& 15 \\ yz^2-y &=& 15z+15 \\ y(z^2-1) &=& 15(z+1) \\ y(z-1)(z+1) &=& 15(z+1) \quad | \quad : (z+1),~ z>0!\\ y(z-1)&=& 15\\ \mathbf{y} &=& \mathbf{\dfrac{15} {z-1} }\qquad (4) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline xz - y &=& 15 \\ \mathbf{y} &=& xz-15 \\ \hline xy-z &=& 15 \\ (xz-15)x-z &=& 15 \\ zx^2-15x-z &=& 15 \\ zx^2-z &=& 15x+15 \\ z(x^2-1) &=& 15(x+1) \\ z(x-1)(x+1) &=& 15(x+1) \quad | \quad : (x+1),~ x>0!\\ z(x-1)&=& 15\\ \mathbf{z} &=& \mathbf{\dfrac{15} {x-1} }\qquad (5) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline xy - z &=& 15 \\ \mathbf{z} &=& xy-15 \\ \hline yz-x &=& 15 \\ (xy-15)y-x &=& 15 \\ xy^2-15y-x &=& 15 \\ xy^2-x &=& 15y+15 \\ x(y^2-1) &=& 15(y+1) \\ x(y-1)(y+1) &=& 15(y+1) \quad | \quad : (y+1),~ y>0!\\ x(y-1)&=& 15\\ \mathbf{x} &=& \mathbf{\dfrac{15} {y-1} }\qquad (6) \\ \hline \end{array}\)

 

\( \small{ \begin{array}{|lrcll|} \hline (4)\times(5)\times(6):& xyz &=& \dfrac{15} {y-1} \times \dfrac{15} {z-1} \times \dfrac{15} {x-1} \\\\ & xyz &=& \dfrac{15^3} {(x-1)(y-1)(z-1)} \\\\ &&& \boxed{\mathbf{(x-1)(y-1)(z-1)}\\=xyz-(xy+xz+yz)+(x+y+z) - 1} \\\\ & xyz &=& \dfrac{15^3} {xyz-(xy+xz+yz)+(x+y+z) - 1} \\\\ &&& \mathbf{ x+y+z=xy+xz+yz-45 } \\\\ & xyz &=& \dfrac{15^3} {xyz-(xy+xz+yz)+(xy+xz+yz-45) - 1} \\\\ & xyz &=& \dfrac{15^3} {xyz-46} \\\\ & xyz(xyz-46) &=& 15^3 \\\\ & (xyz)^2-46xyz- 15^3 &=& 0 \\ \hline & xyz &=& \dfrac{46\pm\sqrt{46^2-4*(-15^3)}}{2} \\\\ & xyz &=& \dfrac{46\pm\sqrt{46^2+4*15^3}}{2} \\\\ & xyz &=& \dfrac{46\pm\sqrt{15616}}{2} \\\\ & xyz &=& \dfrac{46\pm\sqrt{16^2*61}}{2} \\\\ & xyz &=& \dfrac{46\pm 16\sqrt{61}}{2} \\\\ & \mathbf{ xyz } &=& \mathbf{ 23 +8\sqrt{61} } \qquad xyz >0! \\ \hline \end{array} }\)

 

laugh

Jul 6, 2021
Jul 5, 2021
 #1
avatar
0
Jul 5, 2021
 #2
avatar+33653 
+4
Jul 5, 2021
 #1
avatar+171 
+7

$\begin{cases}a+2b+3c+4d=10\\ 4a+b+2c+3d=4\\ 3a+4b+c+2d=-10\\ 2a+3b+4c+d=-4\end{cases}$

 

$\begin{cases}a+2b+3c+4d=10 \ \implies \ a+2b+3c+4d-\left(2b+3c+4d\right)=10-\left(2b+3c+4d\right) \ \implies \ a=10-2b-3c-4d \\ 4a+b+2c+3d=4\\ 3a+4b+c+2d=-10\\ 2a+3b+4c+d=-4\end{cases}$


$\begin{cases}4\left(10-2b-3c-4d\right)+b+2c+3d=4\\ 3\left(10-2b-3c-4d\right)+4b+c+2d=-10\\ 2\left(10-2b-3c-4d\right)+3b+4c+d=-4\end{cases}  $

 

$\begin{cases}40-8b-12c-16d+b+2c+3d=4 \\ 30-6b-9c-12d+4b+c+2d=-10\\ 20-4b-6c-8d+3b+4c+d \end{cases}  $

 

$ \begin{cases}-7b-10c-13d+40=4\\ -2b-8c-10d+30=-10\\ -b-2c-7d+20=-4\end{cases}  $


$ \begin{cases}-7b-10c-13d+40=4 \ \implies \ \ -7b-10c-13d+40-\left(-10c-13d\right)=4-\left(-10c-13d\right) \ \implies \ \ -7b+40=4+10c+13d \ \implies \ -7b=10c+13d-36 \ \implies \ b=-\frac{10c+13d-36}{7}  \\ -2b-8c-10d+30=-10 \\ -b-2c-7d+20=-4\end{cases}  $

 

$ \begin{cases}-2\left(-\frac{10c+13d-36}{7}\right)-8c-10d+30=-10\\ -\left(-\frac{10c+13d-36}{7}\right)-2c-7d+20=-4\end{cases}  $

there's quite a lot of steps, used wolfram and got:

 

 $ \begin{cases}\frac{-36c-44d-72}{7}+30=-10 \implies \frac{-36c-44d-72}{7}=-40 \implies -36c-44d-72=-280 \implies -36c-72=-280+44d \implies -36c=44d-208 \implies  c=-\frac{11d-52}{9}  \\ \frac{-4c-36d-36}{7}+20=-4\end{cases}  $ 

thus, 


  $ \begin{cases}\frac{-4\left(-\frac{11d-52}{9}\right)-36d-36}{7}+20=-4\end{cases} $

$ \Updownarrow  $

$ -\frac{4\left(10d+19\right)}{9}=-24  $

$ -4\left(10d+19\right)=-216  $

$ 10d+19=54  $

$10d=35$

$ d=\frac{7}{2}  $


since we know back, lets walk all the way back for, c, then b, then a:

 

$ c=-\frac{11d-52}{9} \Leftrightarrow c=-\frac{11\cdot \frac{7}{2}-52}{9} \implies c=-\frac{\frac{77}{2}-52}{9} \implies c=-\frac{-\frac{27}{2}}{9} \implies c=-\left(-\frac{27}{18}\right) \text{  or just }  \boxed{c=\frac{27}{18}} \Leftrightarrow  \boxed{c=\frac{3}{2}}  $

 

$ b=-\frac{10c+13d-36}{7} \Leftrightarrow b=-\frac{10\cdot \frac{3}{2}+13\cdot \frac{7}{2}-36}{7} \implies b=-\frac{15+\frac{91}{2}-36}{7} \implies b=-\frac{\frac{91}{2}-21}{7} \implies b=-\frac{\frac{91}{2}-\frac{21\cdot \:2}{2}}{7} \implies b=-\frac{\frac{49}{2}}{7} \implies \boxed{-\frac{49}{14}} \Leftrightarrow \boxed{b=-\frac{7}{2}} $

 

$a=10-2b-3c-4d \Leftrightarrow a=10-2\left(-\frac{7}{2}\right)-3\cdot \frac{3}{2}-4\cdot \frac{7}{2} \leftrightarrow a=2\cdot \frac{7}{2}-4\cdot \frac{7}{2}-3\cdot \frac{3}{2}+10 \implies a=-2\cdot \frac{7}{2}-3\cdot \frac{3}{2}+10 \implies a= -\frac{14}{-2}- \frac{9}{2}+10 \implies a= -7-\frac{9}{2}+10 \implies a= -\frac{9}{2}+3 \implies a= \frac{3\cdot \:2}{2}-\frac{9}{2} \implies \boxed{\frac{-3}{2}}  $

 

thus, we got:

 

$ d=\frac{7}{2} \ \ \ ; \ \ \  b=-\frac{7}{2}  \ \ \ ; \ \ \ c=\frac{3}{2}  \ \ \ ; \ \ \   a=-\frac{3}{2}  $

 

to complete our final condition of $a+b+c+d$:

 

$ a+b+c+d= \frac{7}{2}+\left(-\frac{7}{2}\right)+\frac{3}{2}+\left(-\frac{3}{2}\right)  $

$ \boxed{a+b+c+d =0}  $

 

maybe i have messed anything up in the way :\

Jul 5, 2021

4 Online Users

avatar