f(x)=x−√3x√3+1 f(f(x))=x−√3x√3+1−√3x−√3x√3+1√3+1This simplifies tof(f(x))=x+√31−√3x f(f(f(x)))=x+√31−√3x+√31−√3x+√31−√3x This simplifies tof(f(f(x)))=x now there is a loop happening. f0(x)=xf1(x)=x−√3x√3+1 f2(x)=x+√31−√3x f3(x)=x
2012=2(mod3)
so it seems that
f2012(x)=x+√31−√3x
Coding
f(x) = \frac{x - \sqrt{3}}{x\sqrt{3} + 1} \\~\\
f(f(x)) = \frac{\frac{x - \sqrt{3}}{x\sqrt{3} + 1} - \sqrt{3}}{\frac{x - \sqrt{3}}{x\sqrt{3} + 1}\sqrt{3} + 1}\\
\text{This simplifies to}\\
f(f(x)) =\frac{x+\sqrt3}{1-\sqrt3x}\\~\\
f(f(f(x)) )=\frac{\frac{x+\sqrt3}{1-\sqrt3x}+\sqrt3}{1-\sqrt3\frac{x+\sqrt3}{1-\sqrt3x}}\\~\\
\text{This simplifies to}\\
f(f(f(x)) )=x\\~\\
\text{now there is a loop happening.}\\~\\
f^0(x)=x\\
f^1(x) = \frac{x - \sqrt{3}}{x\sqrt{3} + 1} \\~\\
f^2(x)=\frac{x+\sqrt3}{1-\sqrt3x}\\~\\
f^3(x)=x\\~\\