Questions   
Sort: 
 #1
avatar+941 
0

(a) The left-hand side counts the number of ways to choose k elements from a set of n - 1 elements. The first term, C(n - 1, k - 1), counts the number of ways to choose k - 1 elements, and the second term, C(n - 1, k), counts the number of ways to choose k elements. To form the set of k elements in C(n, k), we simply add an element n to each of these two sets. So, C(n - 1, k - 1) + C(n - 1, k) = C(n, k).

(b) The left-hand side counts the number of ways to choose 0 to n elements from a set of n elements. For each positive integer i from 0 to n, C(n, i) counts the number of ways to choose i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n elements, which is 2^n.

(c) The left-hand side counts the number of ways to choose 0 to k elements from a set of n + k elements. Each term C(n + i, i) counts the number of ways to choose i elements from a set of n + i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n + k elements, which is C(n + k + 1, k).

(d) The left-hand side counts the number of ordered pairs (X, Y) where X is a set of r elements selected from a set of m elements and Y is a set of r elements selected from a set of n elements. For each positive integer i from 0 to r, C(m, i) C(n, r - i) counts the number of ordered pairs where X has i elements and Y has r - i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of r elements from the set of m + n elements, which is C(m + n, r).

(e) The left-hand side counts the number of ordered pairs (a, b) of positive integers where 1 <= a, b <= n. The expression (n + 1)^2 - 2n - 1 counts the total number of ordered pairs of positive integers where 1 <= a, b <= n + 1 and then subtracts the ordered pairs (n + 1, n + 1) and (n + 1, i) for 1 <= i <= n, as well as (i, n + 1) for 1 <= i <= n. This gives us the total number of ordered pairs of positive integers where 1 <= a, b <= n.

(f) The left-hand side counts the number of ordered triples (a, b, c) of positive integers where 1 <= a, b, c <= n. The expression (n + 1)^3 - 3n^2 - 3n - 1 counts the total number of ordered triples of positive integers where 1 <= a, b, c <= n + 1 and then subtracts the ordered triples (n + 1, n + 1, n + 1), (n + 1, n + 1, i), (n + 1, i, n + 1), and (i, n + 1, n + 1) for 1 <= i <= n, as well as all ordered triples where at least one element is equal to n + 1. This gives us the total number of ordered triples of positive integers where 1 <= a, b, c <= n.

Feb 11, 2023
 #1
avatar+941 
0

This inequality can be proven using the Cauchy-Schwarz inequality.

Let \(x = sqrt(a^2 + ab + b^2), y = sqrt(a^2 + ac + c^2)\), and \(z = sqrt(b^2 + bc + c^2)\), then we can rewrite the inequality as:

\(x + y + z >= sqrt(3) (sqrt(ab) + sqrt(ac) + sqrt(bc))\)

Squaring both sides, we get:

\((x + y + z)^2 >= 3 (sqrt(ab) + sqrt(ac) + sqrt(bc))^2\)

Expanding the left-hand side, we get:

\(x^2 + y^2 + z^2 + 2xy + 2xz + 2yz >= 3 (sqrt(ab) + sqrt(ac) + sqrt(bc))^2\)

Expanding the right-hand side, we get:

\(x^2 + y^2 + z^2 + 2xy + 2xz + 2yz >= 3 (ab + ac + bc + 2 sqrt(ab) sqrt(ac) + 2 sqrt(ab) sqrt(bc) + 2 sqrt(ac) sqrt(bc))\)

Using the Cauchy-Schwarz inequality, we have:

\(2xy + 2xz + 2yz >= 2 (sqrt(ab) sqrt(ac) + sqrt(ab) sqrt(bc) + sqrt(ac) sqrt(bc))\)

Substituting this into the previous inequality, we get:

\(x^2 + y^2 + z^2 + 2xy + 2xz + 2yz >= 3 (ab + ac + bc) + 2 (sqrt(ab) sqrt(ac) + sqrt(ab) sqrt(bc) + sqrt(ac) sqrt(bc))\)

Using the definition of x, y, and z, we get:

\((a^2 + ab + b^2) + (a^2 + ac + c^2) + (b^2 + bc + c^2) + 2 sqrt((a^2 + ab + b^2)(a^2 + ac + c^2)) + 2 sqrt((a^2 + ab + b^2)(b^2 + bc + c^2)) + 2 sqrt((a^2 + ac + c^2)(b^2 + bc + c^2)) >= 3 (ab + ac + bc) + 2 (sqrt(ab) sqrt(ac) + sqrt(ab) sqrt(bc) + sqrt(ac) sqrt(bc))\)

Combining like terms and rearranging, we get:

\(2 (sqrt((a^2 + ab + b^2)(a^2 + ac + c^2)) + sqrt((a^2 + ab + b^2)(b^2 + bc + c^2)) + sqrt((a^2 + ac + c^2)(b^2 + bc + c^2))) >= 2 (sqrt(ab) sqrt(ac) + sqrt(ab) sqrt(bc) + sqrt(ac) sqrt(bc))\)

So, the inequality is proven.

Equality occurs when x = y = z, which means\( a^2 + ab + b^2 = a^2 + ac + c^2 =\)

.
Feb 11, 2023
 #1
avatar+941 
0

We can solve this problem using the principle of inclusion-exclusion.

Let's consider the number of ways to color the five squares with no restrictions first. There are 3^5 = 243 ways to color the squares, since each square can be colored in 3 different ways.

Next, let's consider the number of ways to color the squares with the restriction that no two consecutive squares can have the same color. We can use dynamic programming to solve this. Let R[i] be the number of ways to color the first i squares with no two consecutive squares having the same color, such that the i-th square is red. Similarly, let Y[i] and B[i] be the number of ways to color the first i squares with the restriction, such that the i-th square is yellow and blue, respectively. Then, we have:

R[i] = Y[i-1] + B[i-1] Y[i] = R[i-1] + B[i-1] B[i] = R[i-1] + Y[i-1]

Starting with R[1] = 1, Y[1] = 1, B[1] = 1, we can calculate R[2], Y[2], and B[2], and so on, until we reach R[5], Y[5], and B[5]. The final answer is R[5] + Y[5] + B[5].

Applying this dynamic programming approach, we get R[5] = 5, Y[5] = 4, B[5] = 4.

So, there are 5 + 4 + 4 = 13 ways to color the five squares with the restriction that no two consecutive squares can have the same color.

Finally, to find the number of ways to color the squares with the restriction that at least three of the squares are red, we subtract the number of ways to color the squares with fewer than 3 red squares from the number of ways to color the squares with no restrictions.

There are 3 ways to color the squares with 0 red squares, and 3 ways to color the squares with 1 red square, so there are 3 + 3 = 6 ways to color the squares with fewer than 3 red squares.

Therefore, there are 243 - 6 = 237 ways to color the five squares with the restrictions that no two consecutive squares can have the same color and that at least three of the squares are red.

Feb 11, 2023

2 Online Users