Let $s$ be the side length of equilateral triangle $XYZ$, and let $s'$ be the side length of equilateral triangle $X'Y'Z'$. Since the dilation centered at $G$ with scale factor $-3/4$ sends $X$, $Y$, and $Z$ to $X'$, $Y'$, and $Z'$, respectively, we have $GX' = -3/4 \cdot GX$, $GY' = -3/4 \cdot GY$, and $GZ' = -3/4 \cdot GZ$. Since $G$ is the center of equilateral triangle $XYZ$, we have $GX = GY = GZ = s/\sqrt{3}$.
Let $P$ be the intersection of lines $XZ$ and $Y'Z'$. Since $XZ$ and $Y'Z'$ are parallel, we have $\triangle GPZ' \sim \triangle GPX$, and it follows that $GPZ' = (3/4) GPX$. Similarly, we can show that $GPY' = (3/4) GPX$. Therefore, we have
A=[GPY′XZ′]=[GPY′]+[GPX]+[PZ′Y′X]=3/4[GPX]+[PZ′Y′X]
To find $[GPX]$, note that $\triangle GPX$ is a $30^\circ$-$60^\circ$-$90^\circ$ triangle with hypotenuse $GP = s/\sqrt{3}$. Therefore, we have $[GPX] = (1/2) \cdot (s/\sqrt{3}) \cdot (s/2) = s^2/(4\sqrt{3})$.
To find $[PZ'Y'X]$, note that $PZ' = 3/4 \cdot GX = -3s/(4\sqrt{3})$, and $Y'X = XZ = s$. Therefore, we have $[PZ'Y'X] = (1/2) \cdot (-3s/(4\sqrt{3})) \cdot s = -3s^2/(8\sqrt{3})$.
Substituting these values, we get
A= 3/4*s^2/(4*sqrt(3)) - 3s^2/(8*sqrt(3)) = s^2/(8*sqrt(3))
Therefore, we have $A/[XYZ] = A/(s^2\sqrt{3}/4) = 4/(8\sqrt{3}) = sqrt(3)/6.