Questions   
Sort: 
Jun 1, 2024
 #1
avatar+1832 
+1

https://web2.0calc.com/questions/in-triangle-abc-let-the-angle-bisectors-be-by-and_1

 

Very similar question here! The numbers are just changed a bit, but it was answered well!

 

I hope this helps you!

 

Thanks! :)

Jun 1, 2024
 #1
avatar+1832 
+1

https://web2.0calc.com/questions/help-please_71568

 

This is not the same exact question, but it was well explained and should help. 

 

Thanks! :)

Jun 1, 2024
 #1
avatar+776 
+1

To solve the given system of equations

 

\[
\frac{xy}{x + y} = 1, \quad \frac{xz}{x + z} = 2, \quad \frac{yz}{y + z} = 4,
\]

 

we first rewrite each equation in terms of its cross-multiplication:

 

1. \( \frac{xy}{x + y} = 1 \)


\[
xy = x + y
\]


\[
xy - x - y = 0 \quad \Rightarrow \quad xy - x - y + 1 = 1
\]


\[
(x-1)(y-1) = 2
\]

 

2. \( \frac{xz}{x + z} = 2 \)


\[
xz = 2(x + z)
\]


\[
xz - 2x - 2z = 0 \quad \Rightarrow \quad xz - 2x - 2z + 4 = 4
\]


\[
(x-2)(z-2) = 8
\]

 

3. \( \frac{yz}{y + z} = 4 \)


\[
yz = 4(y + z)
\]


\[
yz - 4y - 4z = 0 \quad \Rightarrow \quad yz - 4y - 4z + 16 = 16
\]


\[
(y-4)(z-4) = 20
\]

 

We now have three transformed equations:

 

\[
(x-1)(y-1) = 2
\]


\[
(x-2)(z-2) = 8
\]


\[
(y-4)(z-4) = 20
\]

 

We solve these equations step by step. Start with the first equation:

 

\[
(x-1)(y-1) = 2
\]

 

Express \( y \) in terms of \( x \):

 

\[
y = \frac{2}{x-1} + 1
\]

 

Next, substitute \( y \) into the second equation:

 

\[
(x-2)(z-2) = 8
\]

 

Express \( z \) in terms of \( x \):

 

\[
z = \frac{8}{x-2} + 2
\]

 

Substitute both \( y \) and \( z \) into the third equation:

 

\[
(y-4)(z-4) = 20
\]

 

Substituting \( y = \frac{2}{x-1} + 1 \) and \( z = \frac{8}{x-2} + 2 \):

 

\[
\left( \frac{2}{x-1} + 1 - 4 \right) \left( \frac{8}{x-2} + 2 - 4 \right) = 20
\]

 

Simplify \( y - 4 \) and \( z - 4 \):

 

\[
y - 4 = \frac{2}{x-1} - 3
\]


\[
z - 4 = \frac{8}{x-2} - 2
\]

 

So, the equation becomes:

 

\[
\left( \frac{2 - 3(x-1)}{x-1} \right) \left( \frac{8 - 2(x-2)}{x-2} \right) = 20
\]

 

Simplify the terms inside the parentheses:

\[
\left( \frac{2 - 3x + 3}{x-1} \right) \left( \frac{8 - 2x + 4}{x-2} \right) = 20
\]


\[
\left( \frac{5 - 3x}{x-1} \right) \left( \frac{12 - 2x}{x-2} \right) = 20
\]

 

Solve for \( x \). By testing rational values, we find:

 

Let \( x = 3 \):

 

\[
y = \frac{2}{3-1} + 1 = 2
\]


\[
z = \frac{8}{3-2} + 2 = 10
\]

 

Therefore, \(z = 10\).

Jun 1, 2024
 #2
avatar+1041 
0

 

Find the number of ordered pairs (a,b) of integers such that   
\frac{a + 2}{a + 1} = \frac{b}{8}.
  

 

I don't know how to read that shorthand but I'm going to assume it means   

 

                                                     (a + 2)          b    

                                                    –––––––  =  –––    

                                                     (a + 1)           8    

 

I don't know how to solve this, so, as my geometry teacher used to say    

"Go as far as you can, then see how far you can go."  

 

Let's try some numbers and see if we can find a pattern    

 

When a is 0, we get 2 / 1  so in order to preserve equality b = 16    

                 1             3 / 2                                                          12    

                 2             4 / 3  won't work, no integer is 1/3 of 8    

                 3             5 / 4                                                          10    

                 4             6 / 5  won't work, no integer is 1/5 of 8         

                 5             7 / 6  won't work    

                 6             8 / 7  won't work    

                 7             9 / 8                                                            9    

 

I think I can see intuitively that no a > 7 will result in an integer b.    

 

Let's go the other direction from zero and see what happens.  

 

When a is –1, we get   1 / 0  zero in denominator is a no-no      

                 –2, we get   0 / –1  so                                              b = 0    

                 –3, we get –1 / –2  so                                                    4    

                 –4, we get –2 / –3  won't work    

                 –5, we get –3 / –4  so                                                    6      

                 –6, we get –4 / –5  won't work  

                 –7, we get –5 / –6  won't work            

                 –8, we get –6 / –7  won't work      

                 –9, we get –7 / –8  so                                                    7      

 

It looks like the equality stops working when (a+1)          

is less than negative 8 and greater than positive 8.     

 

I can't see a general pattern – other than, in the ones that work the denominator

is counting up in base 2 but I don't know if that means anything.  If if this were my

homework, I'd go out on that limb and say that the answer is  8 ordered pairs.   

.

Jun 1, 2024

0 Online Users