We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
  Questions   
Sort: 
 #3
avatar+808 
0
Jan 5, 2015
 #3
avatar+99237 
0
Jan 5, 2015
 #1
avatar+99237 
+5

19<5p+4<29         subtract 4 from everything

15 < 5p < 25         divide everything by 5

3 <  p   <  5

--------------------------------------------------------------------------------------------------------------------------

x+5>5 and x+4<3

x+5 >5    subtract  5 to both sides                  x+4<3   subtract 4 from both sides

x  > 0                                                           x < -1

 

"And"  means  "intersection"......in other words, where do these solutions overlap???

Answer:   they don't

Thus, the solution is  { } ....  i.e., the empty set

--------------------------------------------------------------------------------------------------------------------------

(1/20)<(2-3x/20)<(2/5)  ...first, multiply everything by 20 to clear the fractions

1 < 40 - 3x < 8       subtract 40 from both sides

-39 < -3x < -32      divide everything by -3 and remember to "reverse" the inequality signs

13 > x > 32/3

--------------------------------------------------------------------------------------------------------------------------

3x+5<8 or 9x>41

3x+5<8   subtract 5 from both sides                     9x>41  divide both sides by 9                   

3x  < 3    divide both sides by 3                              x > 41/9 

x  < 1                                                  

 "Or"  means "union"

So, the union of these two answers is  (-∞, 1] U (41/9, ∞)

--------------------------------------------------------------------------------------------------------------------------

-25<5(x-5)<4        divide everything by 5

-5 < x-5 < 4/5       add 5 to everything

0 < x < 29/5

-----------------------------------------------------------------------------------------------------------------------

  

Jan 5, 2015
 #3
avatar+7188 
+5
Jan 5, 2015

30 Online Users

avatar
avatar
avatar