Questions   
Sort: 
 #4
avatar+118723 
0
Feb 13, 2015
 #2
avatar+130514 
+5

183k^3 + 61k - 3 = 0

The onsite solver will do this, too......the answer is pretty nasty...!!!

$${\mathtt{183}}{\mathtt{\,\times\,}}{{\mathtt{k}}}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{61}}{\mathtt{\,\times\,}}{\mathtt{k}}{\mathtt{\,-\,}}{\mathtt{3}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{k}} = {\left({\frac{{\sqrt{{\mathtt{15\,613}}}}}{{\mathtt{3\,294}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{122}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}\left({\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,-\,}}{\frac{\left({\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{15\,613}}}}}{{\mathtt{3\,294}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{122}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}\\
{\mathtt{k}} = {\left({\frac{{\sqrt{{\mathtt{15\,613}}}}}{{\mathtt{3\,294}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{122}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}\left({\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,-\,}}{\frac{\left({\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{15\,613}}}}}{{\mathtt{3\,294}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{122}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}\\
{\mathtt{k}} = {\left({\frac{{\sqrt{{\mathtt{15\,613}}}}}{{\mathtt{3\,294}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{122}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{15\,613}}}}}{{\mathtt{3\,294}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{122}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{k}} = {\mathtt{\,-\,}}{\mathtt{0.024\: \!415\: \!509\: \!892\: \!177\: \!8}}{\mathtt{\,-\,}}{\mathtt{0.578\: \!896\: \!955\: \!168\: \!551\: \!4}}{i}\\
{\mathtt{k}} = {\mathtt{\,-\,}}{\mathtt{0.024\: \!415\: \!509\: \!892\: \!177\: \!8}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.578\: \!896\: \!955\: \!168\: \!551\: \!4}}{i}\\
{\mathtt{k}} = {\mathtt{0.048\: \!831\: \!019\: \!784\: \!355\: \!5}}\\
\end{array} \right\}$$

 

Feb 13, 2015
 #431
avatar+118723 
+8

@@ End of Day Wrap   Fri 13/2/15 Sydney,    Australia Time 4:10 am    (Really Sat morn)  ♪ ♫

 

Good morning from Sydney, 

 

Today our wonderful answerers were Quentin, ZamariahLovesYuh(ZLY), Heureka, Alan, BrittanyJ, CPhill, Rosala, Geno3141, RandomGuy11, Panda6702, Kitty<3, Hellokittygirl56, TayJay and GoldenLeaf.  Thanks all.

 

Interest posts:

 

1)  Laugh out Loud    Thanks Rosala

2)  Momentum and rhinos for Geno.   LOL      Thanks Geno

3)  Finding the orthocentre of a circle.   Thanks Melody and CPhill

4)  Minimum distance.  Chris and Melody  

5)  Ratios, trig and triangles.  Hard one.  Thanks Heureka. 

6)  Entering roots on a calculator   Thanks CPhill and Melody

7)  Finding prime numbers,  Seive of Eratosthenes?  Great little clip here. 

8)  Physics, Momentum.  Thanks Alan and Heureka

9)  Exact values of trig ratios.     Melody

10)  Some good integration happening here.  Thanks Alan and Heureka

  

               ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Feb 13, 2015
 #242
avatar+118723 
0

Sat 14/2/15

1)  Our web2.0calc can do a lot of things.  Thanks Chris for reminding me.   

2)  Cool time site reference.     Melody

3)  Complicated algebraic equation.  (Chris took a short cut  )   Thanks Chris and Melody.

4)  Really complicated angle of elevation.     Thanks melody and Chris

5)  Geometric mean.     Thanks CPhill.   

 

               ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Feb 13, 2015

1 Online Users