The y-intercept is (0, -3)
To find the x-intercepts, set the function to 0
x^4-7x^2-3 = 0 this will not factor....let's use the on-site solver
$${{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{3}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{\sqrt{{\sqrt{{\mathtt{61}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}}}}{{\sqrt{{\mathtt{2}}}}}}\\
{\mathtt{x}} = {\frac{{\sqrt{{\sqrt{{\mathtt{61}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}}}}{{\sqrt{{\mathtt{2}}}}}}\\
{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{\sqrt{{\sqrt{{\mathtt{61}}}}{\mathtt{\,-\,}}{\mathtt{7}}}}{\mathtt{\,\times\,}}{i}}{{\sqrt{{\mathtt{2}}}}}}\\
{\mathtt{x}} = {\frac{{\sqrt{{\sqrt{{\mathtt{61}}}}{\mathtt{\,-\,}}{\mathtt{7}}}}{\mathtt{\,\times\,}}{i}}{{\sqrt{{\mathtt{2}}}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.721\: \!235\: \!902\: \!665\: \!060\: \!4}}\\
{\mathtt{x}} = {\mathtt{2.721\: \!235\: \!902\: \!665\: \!060\: \!4}}\\
{\mathtt{x}} = -{\mathtt{0.636\: \!494\: \!177\: \!470\: \!090\: \!6}}{i}\\
{\mathtt{x}} = {\mathtt{0.636\: \!494\: \!177\: \!470\: \!090\: \!6}}{i}\\
\end{array} \right\}$$
So....we have two "real" x intercepts and two "non-real" solutions......note....because of the symmetry of the solutions......... this graph is also symmetric to the origin
This graph confirms this......https://www.desmos.com/calculator/xtuatwy6b7