Hello Melody,
$$\\\mathbf{De{finition:}}\\
\begin{text}
L{et} $ n \ge 1$ be an integer. Then we de{fine} the \\
\textit{Euler phi function} $\phi$ by\\
$\phi(n)=$ the number of positive integers \\
less than $n$ that are relatively prime to $n$
\end{text}$$
$$\\\mathbf{Relatively Prime:}\\
$
\begin{text}
Describes two numbers for which\\
the only common factor is 1. \\
In other words, relatively prime numbers have\\
a greatest common factor $(gcf)$ of $1$. \\
For example, $6$ and $35$ are relatively prime $(gcf = 1)$.\\
The numers $6$ and $8$ are not relatively prime $(gcf = 2)$.
\end{text}$$
$$\\\mathbf{Example\ 1: n = 6 }
$ and n is not a prime number $\\
\samll{\text{
$
\begin{array}{rr}
\textcolor[rgb]{1,0,0}{1}& gcf(6,1) = \textcolor[rgb]{1,0,0}{1}\\
2& gcf(6,2) = 2\\
3& gcf(6,3) = 3\\
4& gcf(6,4) = 2\\
\textcolor[rgb]{1,0,0}{5}& gcf(6,5) = \textcolor[rgb]{1,0,0}{1}\\
6& gcf(6,6) = 6\\
\end{array}
$
}}\\
6 \text{ has } \textcolor[rgb]{0,0,1}{2} \text{ relative primes } 1 \text{ and } 5 \text { see the red color. So } \phi(6) = \textcolor[rgb]{0,0,1}{2}$$
$$\\\mathbf{Example\ 2: n = 9 }
$ and n is not a prime number $\\
\samll{\text{
$
\begin{array}{rr}
\textcolor[rgb]{1,0,0}{1}& gcf(9,1) = \textcolor[rgb]{1,0,0}{1}\\
\textcolor[rgb]{1,0,0}{2}& gcf(9,2) = \textcolor[rgb]{1,0,0}{1}\\
3& gcf(9,3) = 3\\
\textcolor[rgb]{1,0,0}{4}& gcf(9,4) = \textcolor[rgb]{1,0,0}{1}\\
\textcolor[rgb]{1,0,0}{5}& gcf(9,5) = \textcolor[rgb]{1,0,0}{1}\\
6& gcf(9,6) = 3\\
\textcolor[rgb]{1,0,0}{7}& gcf(9,7) = \textcolor[rgb]{1,0,0}{1}\\
\textcolor[rgb]{1,0,0}{8}& gcf(9,8) = \textcolor[rgb]{1,0,0}{1}\\
9& gcf(9,9) = 9\\
\end{array}
$
}}\\
9 \text{ has } \textcolor[rgb]{0,0,1}{6} \text{ relative primes } 1,2,4,5,7,8 \text { see the red color. So } \phi(9) = \textcolor[rgb]{0,0,1}{6}$$
$$\\\mathbf{Example\ 3: n = 7 }
$ and n is a prime number $\\
\samll{\text{
$
\begin{array}{rr}
\textcolor[rgb]{1,0,0}{1}& gcf(7,1) = \textcolor[rgb]{1,0,0}{1}\\
\textcolor[rgb]{1,0,0}{2}& gcf(7,2) = \textcolor[rgb]{1,0,0}{1}\\
\textcolor[rgb]{1,0,0}{3}& gcf(7,3) = \textcolor[rgb]{1,0,0}{1}\\
\textcolor[rgb]{1,0,0}{4}& gcf(7,4) = \textcolor[rgb]{1,0,0}{1}\\
\textcolor[rgb]{1,0,0}{5}& gcf(7,5) = \textcolor[rgb]{1,0,0}{1}\\
\textcolor[rgb]{1,0,0}{6}& gcf(7,6) = \textcolor[rgb]{1,0,0}{1}\\
7& gcf(7,7) = 7\\
\end{array}
$
}}\\
\small{
7 \text{ has } 7-1=\textcolor[rgb]{0,0,1}{6} \text{ relative primes } 1 \text{ until } 6 \text { see the red color. So } \phi(7) = \textcolor[rgb]{0,0,1}{6}.}\\
\text{ So } \phi \text{ of a prime number } \phi(p) = p-1$$

.