Questions   
Sort: 
 #3
avatar+893 
+5
Feb 23, 2015
 #444
avatar+118723 
+8

@@ End of Day Wrap    Mon 23/2/15     Sydney, Australia   Time 1:35 am  (Really Tues morning)    ♪ ♫

 

Hi all,

 

Our wonderful answerers today were Silver27, Tetration, CPhill, Anima, geno3141, abhanda, Alan, Rosala, Eddierose and Heureka.   Thank you.   

 

Interest threads:

 

1)  A suggestion for casual answerers    An old one that has had attention drawn back to it.

2)  Vectors   Thanks CPhill   

3)  Complex numbers (maybe)     Melody

4)  phi(6)   Yes again, LOL      Thanks Heureka

5)  Arithmetic Progression.   Thanks CPhill

6)  Nasty looking function question.   Thanks Alan

7)  Tricky Calculus   Thanks CPhill and Melody

8)  Number puzzle, Thanks anon and Chris. 

9)  Physics, Electical charges.  Thanks SevenUp and Alan

 

                    ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Feb 23, 2015
 #251
avatar+118723 
0

24/2/15

1)  Area Geometry   Thanks Bertie.  

2)  Euler's Equation. V-E+F=2   Thanks anon.   

3)  Physics, Critical angle.   Thanks Alan.

4)  Triangle inscribed in a circle - finding sides.    Thanks CPhill.

5)  Modular Arithmetic.     Thanks CPhill and Heureka

6)  Understanding numbers    CPhill and Melody

7)  Dealing with Neg indices       Heureka and Melody

8)  Rates. These are always tricky.     Thanks CPhill

9)  Rules with infinity     Thanks CPhill

10)  I don't get why mine is wrong         Thanks Alan 

 

                    ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Feb 23, 2015
 #7
avatar+118723 
+5
Feb 23, 2015
 #6
avatar+26400 
+5

$$\\\mathbf{How\ to\ calcultate\ the\ \textit{Euler phi function} \ \phi(n):}\\
$ We have the prime factorization of n = p_1\cdot p_2\cdot p_3 \cdots\\
\phi(n) = n \cdot (1-\frac{1}{p_1})\cdot (1-\frac{1}{p_2}) \cdot (1-\frac{1}{p_3}) \cdots$$

 

$$\\\mathbf{Example\ 1: n = 6 } $\\
The prime factorization of 6 = 2 * 3 = p_1*p_2 \\
\phi(6) = 6 \cdot (1-\frac{1}{2}) \cdot (1-\frac{1}{3}) \\
\phi(6) = 6 \cdot \frac{1}{2} \cdot \frac{2}{3} \\
\phi(6) = \frac{6}{3} \\
\phi(6) = 2$$

 

$$\\\mathbf{Example\ 2: n = 9 } $\\
The prime factorization of 9 = 3^2 = p_1^2 \\
\phi(9) = 9 \cdot (1-\frac{1}{3}) \\
\phi(9) = 9 \cdot \frac{2}{3} \\
\phi(6) = 3 \cdot 2 \\
\phi(6) = 6$$

 

$$\\\mathbf{Example\ 3: n = 7 } $\\
The prime factorization of 7 = 7 = p_1 \qquad 7 $ is a prime number!$ \\
\phi(7) = 7 \cdot (1-\frac{1}{7}) \\
\phi(7) = 7 \cdot \frac{6}{7} \\
\phi(7) = 6$$

 

$$\\\mathbf{Example\ 4: n = 11 } $\\
The prime factorization of 11 = 11 = p_1 \qquad 11 $ is a prime number!$ \\
\phi(11) = 11 \cdot (1-\frac{1}{11}) \\
\phi(11) = 11 \cdot \frac{10}{11} \\
\phi(11) = 10$$

 

$$\boxed{\text{ In general $ \phi(p) = p-1 $, if p is a prime number }}\\\\
\begin{array}{lr}
p = 2: &\phi(2) = 1 \qquad =(2-1)\\
p = 3: &\phi(3) = 2 \qquad =(3-1)\\
p = 5: &\phi(5) = 4 \qquad =(5-1)\\
p = 7: &\phi(7) = 6 \qquad =(7-1)\\
p = 11: &\phi(11) = 10 \qquad =(11-1)\\
p = 13: &\phi(13) = 12 \qquad =(13-1)\\
\cdots & \phi(p) = p-1
\end{array}$$

 

The first 99 values of the Phi function are:

\varphi(n) +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0+   1 1 2 2 4 2 6 4 6
10+ 4 10 4 12 6 8 8 16 6 18
20+ 8 12 10 22 8 20 12 18 12 28
30+ 8 30 16 20 16 24 12 36 18 24
40+ 16 40 12 42 20 24 22 46 16 42
50+ 20 32 24 52 18 40 24 36 28 58
60+ 16 60 30 36 32 48 20 66 32 44
70+ 24 70 24 72 36 40 36 60 24 78
80+ 32 54 40 82 24 64 42 56 40 88
90+ 24 72 44 60 46 72 32 96 42 60

Feb 23, 2015

1 Online Users

avatar