@@ End of Day Wrap Mon 23/2/15 Sydney, Australia Time 1:35 am (Really Tues morning) ♪ ♫
Hi all,
Our wonderful answerers today were Silver27, Tetration, CPhill, Anima, geno3141, abhanda, Alan, Rosala, Eddierose and Heureka. Thank you.
Interest threads:
1) A suggestion for casual answerers An old one that has had attention drawn back to it.
2) Vectors Thanks CPhill
3) Complex numbers (maybe) Melody
4) phi(6) Yes again, LOL Thanks Heureka
5) Arithmetic Progression. Thanks CPhill
6) Nasty looking function question. Thanks Alan
7) Tricky Calculus Thanks CPhill and Melody
8) Number puzzle, Thanks anon and Chris.
9) Physics, Electical charges. Thanks SevenUp and Alan
♫♪ ♪ ♫ ♬ ♬ MELODY ♬ ♬ ♫♪ ♪ ♫
24/2/15
1) Area Geometry Thanks Bertie.
2) Euler's Equation. V-E+F=2 Thanks anon.
3) Physics, Critical angle. Thanks Alan.
4) Triangle inscribed in a circle - finding sides. Thanks CPhill.
5) Modular Arithmetic. Thanks CPhill and Heureka
6) Understanding numbers CPhill and Melody
7) Dealing with Neg indices Heureka and Melody
8) Rates. These are always tricky. Thanks CPhill
9) Rules with infinity Thanks CPhill
10) I don't get why mine is wrong Thanks Alan
♫♪ ♪ ♫ ♬ ♬ MELODY ♬ ♬ ♫♪ ♪ ♫
$$\\\mathbf{How\ to\ calcultate\ the\ \textit{Euler phi function} \ \phi(n):}\\
$ We have the prime factorization of n = p_1\cdot p_2\cdot p_3 \cdots\\
\phi(n) = n \cdot (1-\frac{1}{p_1})\cdot (1-\frac{1}{p_2}) \cdot (1-\frac{1}{p_3}) \cdots$$
$$\\\mathbf{Example\ 1: n = 6 } $\\
The prime factorization of 6 = 2 * 3 = p_1*p_2 \\
\phi(6) = 6 \cdot (1-\frac{1}{2}) \cdot (1-\frac{1}{3}) \\
\phi(6) = 6 \cdot \frac{1}{2} \cdot \frac{2}{3} \\
\phi(6) = \frac{6}{3} \\
\phi(6) = 2$$
$$\\\mathbf{Example\ 2: n = 9 } $\\
The prime factorization of 9 = 3^2 = p_1^2 \\
\phi(9) = 9 \cdot (1-\frac{1}{3}) \\
\phi(9) = 9 \cdot \frac{2}{3} \\
\phi(6) = 3 \cdot 2 \\
\phi(6) = 6$$
$$\\\mathbf{Example\ 3: n = 7 } $\\
The prime factorization of 7 = 7 = p_1 \qquad 7 $ is a prime number!$ \\
\phi(7) = 7 \cdot (1-\frac{1}{7}) \\
\phi(7) = 7 \cdot \frac{6}{7} \\
\phi(7) = 6$$
$$\\\mathbf{Example\ 4: n = 11 } $\\
The prime factorization of 11 = 11 = p_1 \qquad 11 $ is a prime number!$ \\
\phi(11) = 11 \cdot (1-\frac{1}{11}) \\
\phi(11) = 11 \cdot \frac{10}{11} \\
\phi(11) = 10$$
$$\boxed{\text{ In general $ \phi(p) = p-1 $, if p is a prime number }}\\\\
\begin{array}{lr}
p = 2: &\phi(2) = 1 \qquad =(2-1)\\
p = 3: &\phi(3) = 2 \qquad =(3-1)\\
p = 5: &\phi(5) = 4 \qquad =(5-1)\\
p = 7: &\phi(7) = 6 \qquad =(7-1)\\
p = 11: &\phi(11) = 10 \qquad =(11-1)\\
p = 13: &\phi(13) = 12 \qquad =(13-1)\\
\cdots & \phi(p) = p-1
\end{array}$$
The first 99 values of the Phi function are:
![]() | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 |
---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | |
10+ | 4 | 10 | 4 | 12 | 6 | 8 | 8 | 16 | 6 | 18 |
20+ | 8 | 12 | 10 | 22 | 8 | 20 | 12 | 18 | 12 | 28 |
30+ | 8 | 30 | 16 | 20 | 16 | 24 | 12 | 36 | 18 | 24 |
40+ | 16 | 40 | 12 | 42 | 20 | 24 | 22 | 46 | 16 | 42 |
50+ | 20 | 32 | 24 | 52 | 18 | 40 | 24 | 36 | 28 | 58 |
60+ | 16 | 60 | 30 | 36 | 32 | 48 | 20 | 66 | 32 | 44 |
70+ | 24 | 70 | 24 | 72 | 36 | 40 | 36 | 60 | 24 | 78 |
80+ | 32 | 54 | 40 | 82 | 24 | 64 | 42 | 56 | 40 | 88 |
90+ | 24 | 72 | 44 | 60 | 46 | 72 | 32 | 96 | 42 | 60 |
Well Chris, what you have done looks all very impressive but I'm going to have a go at it myself.
I am treading on shaky ground here so if another mathematicians wants to correct me I shall not be too surprise.
let f(x)= $$\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{3}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{1}}$$, solve for (f^-1)'(3).
$$\\y=(0.25)x^3+x-1\\\\
$inverse function$\\\\
x=(0.25)y^3+y-1\\\\
\frac{dx}{dy^{-1}}=0.75y^2+1\\\\
\frac{dy^{-1}}{dx}=\frac{1}{0.75y^2+1}\\\\$$
----------------------------------------------
$$\\x=(0.25)y^3+y-1\\\\
When\;x=3\; \\\\
3=0.25*y^3+y-1\\\\
0=0.25y^3+y-4\\\\$$
http://www.wolframalpha.com/input/?i=0%3D0.25y^3%2By-4
The only real solution to this is y=2
$$\\\frac{dy^{-1}}{dx}=\frac{1}{0.75y^2+1}\\\\
So\; when \;x=3,\;\;y=2\\\\
When\; x=3\;\;\quad\frac{dy^{-1}}{dx}=\frac{1}{0.75*4+1}\\\\
When \;x=3\;\;\quad\frac{dy^{-1}}{dx}=\frac{1}{4}\\\\$$