Questions   
Sort: 
 #268
avatar+118728 
0

Sun 15/3/15

1)     What happened on this day in 1879?                      Thanks AlbertEinstein

2)     Interesting probability - students in a circle              Melody, Alan and CPhill

3)     Manipulating logs                                                   Thanks anon

4)     How many 3 digit numbers are multiples of 7            Thanks Alan

5)     Estimating the sqrt(6) without using the sqrt key.     Thanks CPhill and Melody.

6)     Combinations. 3 mathematicians, 3 answers, nothing like variety.   Thanks Alan, Melody and CPhill.

7)     Permutations - How many words can be formed.        Melody

8)     Another circle permutations queston                         Melody

9)     Poker    (we all got it wrong)                                    Thanks Alan, CPhill and Melody

        Here is a useful website that CPhill found for us.       http://en.wikipedia.org/wiki/Poker_probability

 

               ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Mar 14, 2015
 #1
avatar+118728 
+5

 

How cot inverse (x) is (pie - tan inverse (1÷ x) ) and sec inverse x is simply cos inverse (1÷x) when x

Lets see if I can make sense of your question :)

 

How come         $$cot^{-1}(x)\;\; is\;\;\; \pi - tan^{-1}\left(\frac{1}{x}\right)$$

 

and           $$sec^{-1}(x)=cos^{-1}\left(\frac{1}{x}\right) \qquad when\;\; x <0 ?$$

 

 

from my graphs I can see that

 

cos and sec graphs             https://www.desmos.com/calculator/3ekbqgy7ve

Cot and tan graph              https://www.desmos.com/calculator/j1xb33odx7

 

$$\\sec^{-1}x=cos^{-1}\left(\frac{1}{x}\right)\qquad $when $ x\le-1\;\;and\;\; x\ge 1\\\\
cot^{-1}(x)= tan^{-1}\left(\frac{1}{x}\right)\qquad when\;\;x>0\\
and\\
cot^{-1}(x)=\pi\;\textcolor[rgb]{1,0,0}{+}\; tan^{-1}\left(\frac{1}{x}\right)\qquad when\;\;x<0\\\\$$
 

 

I have been mucking around with this and I need to give it more thought.

Perhaps another mathematician would like to jump in here. 

 

 

 

 

How cot inverse (x) is (pie - tan inverse (1÷ x) ) and sec inverse x is simply cos inverse (1÷x) when x
Mar 14, 2015
 #2
avatar+118728 
+5
Mar 14, 2015
 #11
avatar+118728 
+5

I do hope that you have not passed on your CDD infection to other members of the forum Nauseated!

If any of us get CDD we will know exactly who to blame!

-------------------------------------------------------------------

On a more serious note I am going to give your 3 by 3 solution more thought. 

 

I have not fathomed Nauseated's answer (perhaps he can better explain)

but I did it a different way and got the same answer.

 

This is how I did it.

I thought of it as three ladders placed side by side.

There is the ground level - L1

the first rung                     L2

the second rung                L3

and the top rung               L4

So you have to be on each of the ladders and you can not go down a rung between ladders or you will not get to the end point in 6 units.

So here are your 'rung' possibilities as you go across the ladders.

L1    L1       L1,2,3 or 4                     4 possibilities

L1    L2       L2,3 or 4                         3 possibilities

L1    L3        L3 or 4                           2 possibilities

L1    L4        L4                                   1 possibilities

L2    L2        L2,3,or 4                         3 possibilities

L2    L3        L3,   or 4                         2 possibilities

L2     L4         L4                                 1 possibilities

L3     L3         L3 or 4                          2 possibilities

L3     L4           L4                               1 possibilities

L4     L4            L4                              1  possibilities

Total                                              = 20 possibilities

 

NOW Nauseated, can you explain why our 2 answers are the same.

Do you actually understand the logic behind your answer?  If so, please share  

Mar 14, 2015
 #1
avatar+130551 
+5

 

 

-8x^2 + 4x + 3 = 0   this won't factor....using the onsite solver and the Quadratic Formula, we have

 $${\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{7}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.411\: \!437\: \!827\: \!766\: \!147\: \!6}}\\
{\mathtt{x}} = {\mathtt{0.911\: \!437\: \!827\: \!766\: \!147\: \!6}}\\
\end{array} \right\}$$

 

-4x^2 + 8x + 5  = 0      factor

(-2x -1)(2x -5)  = 0       and setting each factor to 0, we have that x = -0.5 and x = 2.5

 

-9x^2 + 7x + 6 = 0    same as the first......no factorization is possible

$${\mathtt{\,-\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{265}}}}{\mathtt{\,-\,}}{\mathtt{7}}\right)}{{\mathtt{18}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{265}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}\right)}{{\mathtt{18}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.515\: \!490\: \!033\: \!116\: \!650\: \!4}}\\
{\mathtt{x}} = {\mathtt{1.293\: \!267\: \!810\: \!894\: \!428\: \!1}}\\
\end{array} \right\}$$

So.....x = -0.52 and x = 1.29

 

  

Mar 14, 2015

0 Online Users