Questions   
Sort: 
 #4
avatar+26400 
+5

Hallo Melody,

my english is not so good, but i start.

We have a Point P, the coordinate is ( x,y ). So we have P(x,y).

The question is, what is the angle from the x-axis to that Point (we call the angle also polar angle ). See: https://en.wikipedia.org/wiki/Polar_coordinate_system

The formula for the angular coordinate is :  $$\alpha = \arctan{( \frac{y_p}{x_p} )}\\
\text{ or } \alpha = \mathrm{atan( \frac{y_p}{x_p} ) }$$

But this formula does not calculate the angle correctly. We have the same angle in  the Quadrant ( I and III ) and in the Quadrant ( II and IV ).

Why?

Because $$\frac {+y_p}{+x_p} = \frac{-y_p}{-x_p} = +\frac {y_p}{x_p}$$ and $$\frac {+y_p}{-x_p} = \frac{-y_p}{x_p} = - \frac {y_p}{x_p}$$

If we divide y by x, the information about the quadrant has disappeared.

But we can see:

$$\\\small{\text{Point in the I. Quadrant $y_p > 0 $ and $ x_p > 0 $}}\\
\small{\text{Point in the II. Quadrant $y_p > 0 $ and $ x_p < 0 $}}\\
\small{\text{Point in the III. Quadrant $y_p < 0 $ and $ x_p < 0 $}}\\
\small{\text{Point in the IV. Quadrant $y_p < 0 $ and $ x_p > 0 $}}\\$$

We must correct the angular coordinate afterwards.

and if y or x is zero, we must put constants:

$$\\\small{\text{$ y_p = 0 $ and $ x_p > 0 \qquad \alpha = 0 $ }}\\
\small{\text{$ y_p > 0 $ and $ x_p = 0 \qquad \alpha = \frac{\pi}{2}$ }}\\
\small{\text{$ y_p = 0 $ and $ x_p < 0 \qquad \alpha = \pi$ }}\\
\small{\text{$ y_p < 0 $ and $ x_p = 0 \qquad \alpha = \frac{3}{2}\pi$ }}\\$$

We have succeed, there is a function which takes this work from us!

The funktion is atan2

and needs two parametres $$\small{\text{ $y_p$ and $x_p$}}$$

The new formula for the angular coordinate is :  $$\boxed{\ \alpha = \mathrm{atan} 2{( y_p, x_p )}\ }$$

.
Mar 29, 2015
 #475
avatar+118724 
+8

@@ End of Day Wrap   Sun 29/3/15   Sydney, Australia   Time 10:27 pm  ♪ ♫

 

Good evening everyone,

 

Today our wonderful answerers were Alan, Geno3141, CPhill, Gibsonj338, Bertie, Heureka, Nauseated and Civonamzuk.  A very big thank you to each of you. :)

 

Interest Posts:

 

 FTJ means "for the juniors"

1)     Probability of choosing red and blue cards                                Thanks Melody and Alan

2)     Simultaneous Equations      (middle high)                                 Thanks CPhill

3)     Entering roots on the Web2 calc        (everyone)                       Melody

4)    Subtracting mixed numerals      FTJ                                           Melody

5)    Simplifying algebraic fractions (introduction)    FTJ                       Melody

6)    Physics, force                                                                          Melody and Nauseated

7)    A new calculator function.  I have not seen this before.            Thanks Heureka.

8)   Cross-partial derivative                                                 Thanks Melody, Heureka, Alan and Bertie.

   

               ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Mar 29, 2015
 #282
avatar+118724 
0

Mon 30/3/15

FTJ means "For the Juniors"

1)     Counting arrangements of beads on a bracelet                    Melody

2)     Counting Lattice points                                                       Thanks Alan and CPhill

3)     More lattice counting       Different answers.                        Thanks CPhill and Melody

4)     Counting letter combinations  More input needed. lol           Thanks CPhill and Melody

     They should hire us to make multiple choice answers for these scenarios.   lol

5)     Force required - lever used                                                 Not answered

6)     Probability - different from usual                                         Thanks Gino

7)     Counting - b***s into boxes                                                 Thanks Alan and Nauseated 

8)     Counting question   Everyone could try this one. FTJ           Thanks CPhill         

9)     Counting chords      Another one that everyone can try     FTJ          Thanks Alan

10)     3D coordinate geometry, circles ans spheres                    Thanks CPhill and Alan

11)     Triangle dilations                                                              Thanks CPhill

12)     Subtracting fractions - you should try it MG     FTJ             Thanks Heureka

13)     Simplifying trig identities                                                    Thanks CPhill

                                                                                  

                    ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Mar 29, 2015
 #2
avatar+118724 
+8

Thanks Bertie,

 

I just want to look at this simlified scenario,

5 computers 3 printers.

Now it seems to me that the number of ways any computer can be net worked to printers is as follows:

any one printer+ any 2 printers+ all three printers = 3C1+3C2+3C3 = 3+3+1 = 7 ways

There are 5 computers so the number of ways is   $${{\mathtt{7}}}^{{\mathtt{5}}} = {\mathtt{16\,807}}$$

 

Ok so here every computer is connected to at least one printer BUT for some of these outcomes 1 or more computers are not connected to any printer.  So some of these outcomes are invalid.  The number is too big.

IS THAT STATEMENT CORRECT BERTIE?  Perhaps i see a glimmer of light.  :/

 

-------------------------------------------------------

 

What was your formula Nauseated? 

 

$$\displaystyle \sum \limits_{i=0}^{\textcolor[rgb]{1,0,0}{N-1}} *(-1)^i*\binom{N}{i}* (N-i)^k$$

 

The solution to this is found using this formula. k = number of computers and N = number of peripheral graphics devices.    N=3,    k=5

 

$$\displaystyle \sum \limits_{i=0}^{\textcolor[rgb]{1,0,0}{3-1}} *(-1)^i*\binom{3}{i}* (3-i)^5 \hspace{15pt}| \hspace{15pt} \Text {N=3 \; k=5} \\\$$                           k is the big one

 

 

 

I have a question for you too Nauseated :)

How do you know which number is N and which one is k.   Should N be the smallest one, it was for your other example.   If that is so then I have the 5 and 3 around the wrong way here.

 

PLUS Nauseated, I just realised that you used some LaTex that I didn't know. \binom{5}{i}  also \hspace {15}

Thanks for that - I will add it to our very disorganised LaTex thread.  :))

Mar 29, 2015
 #2
avatar+26400 
+5

 

You can also use atan2, see examples below, to get the angle in the quadrant  (I, II, III, and IV):

$$\\\text{Formula:}\\
\alpha = \mathrm{atan2}\ {(\Delta y, \Delta x)}$$

Examples:

http://web2.0rechner.de/#atan2(1,1)  $$\alpha = 45\ \mathrm{degrees} \qquad \text{Quadrant I}$$

http://web2.0rechner.de/#atan2(1,-1) $$\alpha = 135\ \mathrm{degrees} \qquad \text{Quadrant II}$$

http://web2.0calc.com/#atan2(-1,-1)    $$\alpha = -135\ \mathrm{degrees} \qquad \text{Quadrant III}$$

http://web2.0rechner.de/#atan2(-1,1)  $$\alpha = -45\ \mathrm{degrees} \qquad \text{Quadrant IV}$$

Click the "=" Button in the link

Mar 29, 2015
 #1
avatar+118724 
+5
Mar 29, 2015

0 Online Users