$$\left(\left({\mathtt{8}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{5}}}}\right)}\right){\mathtt{\,\times\,}}\left({\mathtt{8}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{\left({\frac{{\mathtt{5}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{5}}}}\right)}\right)\right)$$
$${\mathtt{8}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{5}}}}\right)}{\mathtt{\,\times\,}}{\mathtt{8}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{\left({\frac{{\mathtt{5}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{5}}}}\right)}$$
$${\mathtt{5\,184}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{\left({\frac{{\mathtt{7}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{\left({\frac{{\mathtt{4}}}{{\mathtt{5}}}}\right)}$$ or $${\mathtt{5\,184}}{\mathtt{\,\times\,}}{\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{{\mathtt{b}}}^{{\mathtt{7}}}}}{\mathtt{\,\times\,}}{\sqrt[{{\mathtt{{\mathtt{5}}}}}]{{{\mathtt{t}}}^{{\mathtt{4}}}}}$$
.