Questions   
Sort: 
 #10
avatar+130515 
+9

The area of the equilateral triangle = (1/2) 4 sin120 = 2(√3)/ 2  = √3

The radius of both circles is given by  √[ 1^2 + (1/√3)^2 ]  =   √[1 + 1/3]   =  2/ √3

 

So....the diagonal of the rectangle = 2 ( 2/ √3 )  =  4 / √3

And, using the Pythagorean Thorem, "y" in the rectangular figure = √ [( 4/ √3) ^2 - x^2 ] = √[16/3 - x^2]

So......since the area of the triangle and the rectangle is equal, we have...

 

y * x  = √3

√[16/3 - x^2] * x =  √3    square   both sides

(16/3)x^2 - x^4  = 3        multiply through by 3

16x^2 - 3x^4  = 9            rearrange

3x^4 - 16x^2  + 9 = 0         let m= x^2   ....  so we have

3m^2 - 16m + 9 = 0

 

Using the quadratic formula [and an assist from the on-site solver], we have

$${\mathtt{3}}\left[{{m}}^{{\mathtt{2}}}\right]{\mathtt{\,-\,}}{\mathtt{16}}{\mathtt{\,\times\,}}{\mathtt{m}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{m}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{37}}}}{\mathtt{\,-\,}}{\mathtt{8}}\right)}{{\mathtt{3}}}}\\
{\mathtt{m}} = {\frac{\left({\sqrt{{\mathtt{37}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{8}}\right)}{{\mathtt{3}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{m}} = {\mathtt{0.639\: \!079\: \!156\: \!567\: \!260\: \!1}}\\
{\mathtt{m}} = {\mathtt{4.694\: \!254\: \!176\: \!766\: \!073\: \!2}}\\
\end{array} \right\}$$

 

So  x = about .7994   or x = about 2.1666

If x = .799, y = √[16/3 - .7994^2] = .2166    ...but this is impossible....since y is smaller than x

 

If x = 2.1666, y = √[16/3 - 2.1666^2]  = about . 7994

 

So....x =about .2166 and y = about .7994

 

 

  

May 14, 2015

1 Online Users