Mon 18/5/15
If you would like to comment on other site issues please do so on the Lantern Thread. Thank you. ![]()
FTJ means 'For the juniors'
Interest Posts:
1) The Unfortunate Merchant (Puzzle from EinsteinJr) Thanks CPhill and Alan
2) What is so special about Euler's number (e) Thanks CPhill and Melody
3) Solving an inequality Thanks DarkBlaze347
4) Find height of water tank. Thanks Heureka
5) What are binary numbers? Melody
♫♪ ♪ ♫ ♬ ♬ MELODY ♬ ♬ ♫♪ ♪ ♫
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | FOUR IN A ROW |
| W | W | W | W | L | $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{32}}}{{\mathtt{243}}}} = {\mathtt{0.131\: \!687\: \!242\: \!798\: \!353\: \!9}}$$ | |||
| L | W | W | W | W | ||||
| L | W | W | W | W | L | $${\mathtt{3}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{16}}}{{\mathtt{243}}}} = {\mathtt{0.065\: \!843\: \!621\: \!399\: \!177}}$$ | ||
| L | W | W | W | W | L | |||
| L | W | W | W | W | L |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | FIVE IN A ROW |
| W | W | W | W | W | L | $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{64}}}{{\mathtt{729}}}} = {\mathtt{0.087\: \!791\: \!495\: \!198\: \!902\: \!6}}$$ | ||
| L | W | W | W | W | W | |||
| L | W | W | W | W | W | L | $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}} = {\mathtt{0.029\: \!263\: \!831\: \!732\: \!967\: \!5}}$$ | |
| L | W | W | W | W | W | L |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | SIX IN A ROW |
| W | W | W | W | W | W | L | $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}} = {\mathtt{0.058\: \!527\: \!663\: \!465\: \!935\: \!1}}$$ | |
| L | W | W | W | W | W | W | ||
| L | W | W | W | W | W | W | L | $${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}} = {\mathtt{0.009\: \!754\: \!610\: \!577\: \!655\: \!8}}$$ |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | SEVEN IN A ROW |
| W | W | W | W | W | W | W | L | |
| L | W | W | W | W | W | W | W |
I TRIED TO PUT ALL THIS INTO A TABLE BUT THE TABLE DID NOT COPE VERY WELL
FOUR IN A ROW
$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{32}}}{{\mathtt{243}}}} = {\mathtt{0.131\: \!687\: \!242\: \!798\: \!353\: \!9}}$$
$${\mathtt{3}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{16}}}{{\mathtt{243}}}} = {\mathtt{0.065\: \!843\: \!621\: \!399\: \!177}}$$
FIVE IN A ROW
$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{64}}}{{\mathtt{729}}}} = {\mathtt{0.087\: \!791\: \!495\: \!198\: \!902\: \!6}}$$
$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}} = {\mathtt{0.029\: \!263\: \!831\: \!732\: \!967\: \!5}}$$
SIX IN A ROW
$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}} = {\mathtt{0.058\: \!527\: \!663\: \!465\: \!935\: \!1}}$$
$${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}} = {\mathtt{0.009\: \!754\: \!610\: \!577\: \!655\: \!8}}$$
SEVEN IN A ROW
$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{7}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\mathtt{0.039\: \!018\: \!442\: \!310\: \!623\: \!4}}$$
EIGHT IN A ROW
$${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{8}}} = {\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\mathtt{0.039\: \!018\: \!442\: \!310\: \!623\: \!4}}$$
$${\frac{{\mathtt{32}}}{{\mathtt{243}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{16}}}{{\mathtt{243}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{729}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\frac{{\mathtt{112}}}{{\mathtt{243}}}} = {\mathtt{0.460\: \!905\: \!349\: \!794\: \!238\: \!7}}$$
.what is the numbers that satisfies the pythagoras theorem ?
https://commons.wikimedia.org/wiki/File:Pythagorean.svg#/media/File:Pythagorean.svg
A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k.
Generating a triple:
A fundamental formula for generating Pythagorean triples given an arbitrary pair of positive integers m and n with m > n. The formula states that the integers
$$a = m^2 - n^2 ,\ \, b = 2mn ,\ \, c = m^2 + n^2$$
or
$$a = k\cdot(m^2 - n^2) ,\ \, b = k\cdot(2mn) ,\ \, c = k\cdot(m^2 + n^2)$$
form a Pythagorean triple.
Example:
$$\\ \text{If } m=2 \text{ and } n = 1:\\
a= 2^2-1^2 =4 - 1 = 3 \\
b = 2\cdot 2 \cdot 1 = 4 \\
c = 2^2 + 1^2 = 4+1=5$$
Pythagorean triple (3, 4, 5), because $$\small{\text{$3^2+4^2=5^2$}}$$
![]()