Questions   
Sort: 
 #33
avatar+118725 
0

Mon 18/5/15

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

FTJ means 'For the juniors' 

Interest Posts:

1)  The Unfortunate Merchant   (Puzzle from EinsteinJr)                  Thanks CPhill and Alan

2)  What is so special about Euler's number (e)                                Thanks CPhill and Melody

3)  Solving an inequality                                                                     Thanks DarkBlaze347

4)  Find height of water tank.                                                            Thanks Heureka

5)  What are binary numbers?                                                           Melody

 

                          ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

May 17, 2015
 #1
avatar
+5
May 17, 2015
 #3
avatar+118725 
+13

 

1 2 3 4 5 6 7 8  FOUR IN A ROW
W W W L            $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{32}}}{{\mathtt{243}}}} = {\mathtt{0.131\: \!687\: \!242\: \!798\: \!353\: \!9}}$$
      L W W W W
L W W W W L           $${\mathtt{3}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{16}}}{{\mathtt{243}}}} = {\mathtt{0.065\: \!843\: \!621\: \!399\: \!177}}$$
  L W W W W L  
    L W W W W L

 

 

1 2 3 4 5 6 7 8                          FIVE IN A ROW
W W W W  L          $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{64}}}{{\mathtt{729}}}} = {\mathtt{0.087\: \!791\: \!495\: \!198\: \!902\: \!6}}$$
     L W W W W W
L W W W W W  L       $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}} = {\mathtt{0.029\: \!263\: \!831\: \!732\: \!967\: \!5}}$$      
  L W W W W W  L

 

 

1 2 3 4 5 6 7 8                       SIX IN A ROW
W W W W  W  L        $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}} = {\mathtt{0.058\: \!527\: \!663\: \!465\: \!935\: \!1}}$$
   L  W W W W W W
L W W W W W  W  L     $${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}} = {\mathtt{0.009\: \!754\: \!610\: \!577\: \!655\: \!8}}$$

 

1 2 3 4 5 6 7 8    SEVEN IN A ROW
W W W W W W W L  
L W W W W W W W  

 

 

I TRIED TO PUT ALL THIS INTO A TABLE BUT THE TABLE DID NOT COPE VERY WELL   

 

FOUR IN A ROW

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{32}}}{{\mathtt{243}}}} = {\mathtt{0.131\: \!687\: \!242\: \!798\: \!353\: \!9}}$$

 

$${\mathtt{3}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{16}}}{{\mathtt{243}}}} = {\mathtt{0.065\: \!843\: \!621\: \!399\: \!177}}$$

 

FIVE IN A ROW

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{64}}}{{\mathtt{729}}}} = {\mathtt{0.087\: \!791\: \!495\: \!198\: \!902\: \!6}}$$

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}} = {\mathtt{0.029\: \!263\: \!831\: \!732\: \!967\: \!5}}$$

 

SIX IN A ROW

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}} = {\mathtt{0.058\: \!527\: \!663\: \!465\: \!935\: \!1}}$$

 

$${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}} = {\mathtt{0.009\: \!754\: \!610\: \!577\: \!655\: \!8}}$$

 

SEVEN IN A ROW  

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{7}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\mathtt{0.039\: \!018\: \!442\: \!310\: \!623\: \!4}}$$

 

EIGHT IN A ROW

 

$${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{8}}} = {\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\mathtt{0.039\: \!018\: \!442\: \!310\: \!623\: \!4}}$$

 

 

$${\frac{{\mathtt{32}}}{{\mathtt{243}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{16}}}{{\mathtt{243}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{729}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\frac{{\mathtt{112}}}{{\mathtt{243}}}} = {\mathtt{0.460\: \!905\: \!349\: \!794\: \!238\: \!7}}$$

.
May 17, 2015
 #1
avatar+118725 
+5
May 17, 2015
 #4
avatar+26404 
+5

what is the numbers that satisfies the pythagoras theorem ?

https://commons.wikimedia.org/wiki/File:Pythagorean.svg#/media/File:Pythagorean.svg

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k.

Generating a triple:

A fundamental formula for generating Pythagorean triples given an arbitrary pair of positive integers m and n with m > n. The formula states that the integers

$$a = m^2 - n^2 ,\ \, b = 2mn ,\ \, c = m^2 + n^2$$ 

or

$$a = k\cdot(m^2 - n^2) ,\ \, b = k\cdot(2mn) ,\ \, c = k\cdot(m^2 + n^2)$$

form a Pythagorean triple.

Example:

$$\\ \text{If } m=2 \text{ and } n = 1:\\
a= 2^2-1^2 =4 - 1 = 3 \\
b = 2\cdot 2 \cdot 1 = 4 \\
c = 2^2 + 1^2 = 4+1=5$$

Pythagorean triple (3, 4, 5), because $$\small{\text{$3^2+4^2=5^2$}}$$

May 17, 2015
 #3
avatar+118725 
+5

Hi MathsGod1

 

 

 

 

 

Here is a video you should watch and absorb :)

 

https://www.khanacademy.org/math/geometry/right_triangles_topic/pyth_theor/v/pythagorean-theorem

 

----------------------------------

 

Oh I almost forgot.  Numbers that work for the pythagorean Theorem are called pythagorean triads.

May 17, 2015

1 Online Users