Questions   
Sort: 
 #3
avatar+118723 
+10

$${\frac{\left({\frac{{\mathtt{x}}}{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{y}}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{y}}}{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{y}}\right)}}\right){\mathtt{\,\times\,}}\left({\frac{\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}{\left({{\mathtt{x}}}^{{\mathtt{4}}}{\mathtt{\,-\,}}{{\mathtt{y}}}^{{\mathtt{4}}}\right)}}\right)}{\left({\frac{{\mathtt{x}}}{\left(\left({{\mathtt{x}}}^{{\mathtt{2}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{y}}{\mathtt{\,\small\textbf+\,}}\left({{\mathtt{y}}}^{{\mathtt{2}}}\right)\right)}}\right)}}$$

 

$$\\\left(\left(\frac{x}{(x+y)}+\frac{y}{(x-y)}\right)*\left(\frac{(x^2-xy)}{(x^4-y^4)}\right)\right)\div\left(\frac{x}{(x^2)+2xy+(y^2)}\right)\\\\
=\left(\left(\frac{x(x-y)}{(x+y)(x-y)}+\frac{y(x+y)}{(x-y)(x+y)}\right)*\left(\frac{x(x-y)}{(x^2)^2-(y^2)^2}\right)\right)\times\left(\frac{(x^2)+2xy+(y^2)}{x}\right)\\\\
=\left(\left(\frac{x^2-xy+xy+y^2}{(x+y)(x-y)}\right)*\left(\frac{x(x-y)}{(x^2)^2-(y^2)^2}\right)\right)\times\left(\frac{(x+y)^2}{x}\right)\\\\
=\left(\left(\frac{x^2+y^2}{(x+y)}\right)*\left(\frac{x}{(x^2-y^2)(x^2+y^2)}\right)\right)\times\left(\frac{(x+y)^2}{x}\right)\\\\
=\frac{x^2+y^2}{1}\times\frac{1}{(x^2-y^2)(x^2+y^2)}\times\frac{x+y}{1}\\\\
=\frac{1}{1}\times\frac{1}{(x^2-y^2)}\times\frac{x+y}{1}\\\\
=\frac{1}{(x-y)(x+y)}\times\frac{x+y}{1}\\\\
=\frac{1}{x-y}\\\\$$

.
Jul 29, 2015
 #3
avatar+118723 
+5
Jul 29, 2015
 #2
avatar+26400 
+8

Find The age for a rock for which you determine that 65% as the original uranium – 238 remainswhile the other 35% has decayed into lead

 

I assume: uranium-lead decay route $${}^{238}U$$ to $${}^{206}{Pb}$$

 

(i)

$$\boxed{~N_t = N_0\cdot e^{-k\cdot t} ~~(1)~} \quad \small{\text{k, is called the decay constant.}}\\ \small{\text{$N_0$ is the initial number of nuclei (at time zero), and}} \\ \small{\text{$N_t$ is the number remaining after the time interval.}} \\ \small{\text{We can also write our equation:~}}
\boxed{~\ln{ \left( \dfrac{N_t}{N_0} } \right) = -k\cdot t ~~(2)~}$$

(ii)

$$\small{\text{Relationship between the decay constant, k, and half-life, $t_{1/2}$.}}\\
\small{\text{We set $N_{t_{1/2}} = \dfrac{N_0}{2} $ in (1)~so we have $ \dfrac{N_0}{2}=N_0\cdot e^{-k\cdot t_{1/2}} $ and get }}\\
\boxed{~ k = \dfrac{ \ln{(2)} }{ t_{1/2} } ~~(3)~}$$

(iii)

$$\small{\text{We get t, if we rearrange (2). We have~~}}
\boxed{~ t = -\dfrac{1}{k} \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(4)~}\\
\small{\text{We set k in (3) into (4). We have~~}}
\boxed{~ t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{N_t}{N_0} } \right)~~(5)~}\\$$

(iv)

$$\small{\text{$N_0 = {}^{238}U + {}^{206}Pb\cdot \dfrac{238}{206} $. And we have $35\%$ of ${}^{238}U$ is ${}^{206}Pb$ so }}\\
\small{\text{$N_0 = {}^{238}U + ({}^{238}U\cdot 35\%) \cdot \dfrac{238}{206}. $We obtain the latter quantity of ${}^{206}Pb$ by}}\\
\small{\text{multiplying the present mass of lead-206 by the ratio of the atomic mass of uranium}}\\
\small{\text{to that of lead, into which it has decayed. $N_t ={}^{238}U$. }}$$

$$\small{\text{ Finally
$\dfrac{N_t}{N_0} = \dfrac{ {}^{238}U } {{}^{238}U + ({}^{238}U\cdot 35\%) \cdot \dfrac{238}{206}} = \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} }
$
}}\\
\boxed{ \dfrac{N_t}{N_0} = \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} }
}$$

(v)

$$\small{\text{If we regard the half-life $t_{1/2}$ for the decay of}}\\
\small{\text{uranium-238 $({}^{238}U)$ to lead-206 $({}^{206}Pb)$ is $\mathbf{4.468\cdot 10^9~ yr }$, }}\\
\small{\text{we can calculate how old the rock is.}}\\
\small{\text{We now have
$t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right)
$
}}\\
\small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot\ln{ \left( \dfrac{1}{ 1 + 35\% \cdot \dfrac{238}{206} } } \right)
$
}} \\
}}\\
\small{\text{or $t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot
\left[ \ln{ (1) } -
\ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right)
\right]
$
}} \\
}}\\
\small{\text{Because $\ln{(1)}= 0$
}} \\
\small{\text{$t = -\dfrac{t_{1/2}}{ \ln(2) } \cdot
\left[ 0 -
\ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right)
\right]
$
}} \\\\
\small{\text{and finally}}\\\\
\boxed{t = t_{1/2} \cdot \dfrac
{ \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) }
{ \ln(2) }}$$

(vi)

$$\small{\text{We calculate:}}\\
\small{\text{$
\begin{array}{rcl}
t &=&
t_{1/2} \cdot
\dfrac
{ \ln{ \left( 1 + 35\% \cdot \dfrac{238}{206} } \right) }
{ \ln(2) }\\
t &=& 4.468\cdot 10^9~ yr \cdot
\dfrac
{ \ln{ \left( 1.40436893204} \right) }
{ \ln(2) }\\\\
t &=& 4.468\cdot 10^9~ yr \cdot
\dfrac
{ 0.33958804319 }
{0.69314718056 }\\\\
t &=& 4.468\cdot 10^9~ yr \cdot 0.48992198586 \\\\
\mathbf{t} &\mathbf{=}& \mathbf{ 2.18897143282\cdot 10^9~ yr }
\end{array}
$}}$$

 

The rock is 2 188 971 432.82 years old 

 

see SAMPLE EXERCISE 21.7 : http://wps.prenhall.com/wps/media/objects/3313/3392670/blb2104.html 

 

Jul 29, 2015

0 Online Users