Questions   
Sort: 
 #5
avatar+26388 
+10
Feb 3, 2017
 #4
avatar+26388 
+15

I think I am supposed to use integration by substitution or integration by parts, but I'm not sure. Can anyone help with this?

\(\int{x}^{3}\sqrt{{x}^{2}-1}dx\)

 

We apply twice substitution

 

We need the following formulae:

\(\begin{array}{|rcll|} \hline \cosh^2(z) - \sinh^2(z) &=& 1 \\ \sinh^2(z) &=& \cosh^2(z) -1 \\ \sinh(z) &=& \sqrt{\cosh^2(z) -1} \\\\ \cosh^2(z) - \sinh^2(z) &=& 1 \\ \cosh^2(z) &=& 1+\sinh^2(z) \\\\ \frac{d}{dz}\sinh(z) &=& \cosh(z) \\ \frac{d}{dz}\cosh(z) &=& \sinh(z) \\ \hline \end{array} \)

 

1. Substitution

\(\begin{array}{|rcll|} \hline x &=& \cosh(z)\\ dx &=& \sinh(z)\ dz \\ \hline \end{array} \begin{array}{|rcll|} \hline && \int{ x^3\cdot\sqrt{x^2-1}\ dx } \\ &=& \int{ \cosh^3(z)\cdot \sqrt{\cosh^2(z)-1} \cdot \sinh(z)\ dz } \\ &=& \int{ \cosh^3(z)\cdot \sinh(z) \cdot \sinh(z)\ dz } \\ &=& \int{ \cosh^3(z)\cdot \sinh^2(z)\ dz } \\ \hline \end{array} \)

 

 

2. Substitution

\(\begin{array}{|rcll|} \hline u &=& \sinh(z)\\ du &=& \cosh(z)\ dz \\ \hline \end{array} \begin{array}{|rcll|} \hline && \int{ \cosh^3(z)\cdot \sinh^2(z)\ dz } \\ &=& \int{ \cosh^2(z)\cdot \sinh^2(z)\cdot \cosh(z)\ dz \\ } \\ &=& \int{ [1+\sinh^2(z)]\cdot \sinh^2(z)\cdot \cosh(z)\ dz \\ } \\ &=& \int{ (1+u^2)\cdot u^2 \ du } \\ &=& \int{ (u^2+u^4)\ du } \\ &=& \frac{u^3}{3} + \frac{u^5}{5} + c \\ &=& \frac{u^3}{3} + \frac{u^5}{5} + c \\ &=& \frac{u^3}{3}\cdot \frac55 + \frac{u^5}{5}\cdot \frac33 + c \\ &=& \frac{u^3}{15}\cdot \left( 5+3u^2 \right)+ c \\ \hline \end{array} \)

 

3. Back substitution

\(\begin{array}{|rcll|} \hline u &=& \sinh(z) \\ &=& \sqrt{\cosh^2(z) -1} \\ &=& \sqrt{x^2 -1} \\ \hline \end{array} \begin{array}{|rcll|} \hline && \mathbf{\int{ x^3\cdot\sqrt{x^2-1}\ dx } }\\ &=& \frac{u^3}{15}\cdot \left( 5+3u^2 \right)+ c \\ &=& \frac{(\sqrt{x^2 -1})^3}{15}\cdot \left[ 5+3(\sqrt{x^2 -1})^2 \right]+ c \\ &=& \frac{(x^2 -1)^{\frac32}}{15}\cdot \left[ 5+3(x^2 -1) \right]+ c \\ &=& \frac{(x^2 -1)^{\frac32}}{15}\cdot ( 5+3x^2-3 )+ c \\ &\mathbf{=}& \mathbf{ \dfrac{(x^2 -1)^{\frac32}}{15}\cdot ( 3x^2+2 )+ c }\\ \hline \end{array} \)

 

 

laugh

Feb 3, 2017
 #2
avatar
0
Feb 3, 2017

1 Online Users

avatar