Questions   
Sort: 
 #2
avatar+118723 
+1
Mar 31, 2017
 #1
avatar+206 
+2
Mar 31, 2017
 #1
avatar
0
Mar 31, 2017
 #8
avatar
0

Compute the definite integral:
 integral_0^1 ((1 - x)^4 x^4)/(x^2 + 1) dx
For the integrand ((1 - x)^4 x^4)/(x^2 + 1), cancel common terms in the numerator and denominator:
 = integral_0^1 ((x - 1)^4 x^4)/(x^2 + 1) dx
For the integrand ((x - 1)^4 x^4)/(x^2 + 1), do long division:
 = integral_0^1 (x^6 - 4 x^5 + 5 x^4 - 4 x^2 - 4/(x^2 + 1) + 4) dx
Integrate the sum term by term and factor out constants:
 = -4 integral_0^1 1/(x^2 + 1) dx + integral_0^1 x^6 dx - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of 1/(x^2 + 1) is tan^(-1)(x):
 = (-4 tan^(-1)(x)) right bracketing bar _0^1 + integral_0^1 x^6 dx - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
 (-4 tan^(-1)(x)) right bracketing bar _0^1 = (-4 tan^(-1)(1)) - (-4 tan^(-1)(0)) = -π:
 = -π + integral_0^1 x^6 dx - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^6 is x^7/7:
 = -π + x^7/7 right bracketing bar _0^1 - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
 x^7/7 right bracketing bar _0^1 = 1^7/7 - 0^7/7 = 1/7:
 = 1/7 - π - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^5 is x^6/6:
 = 1/7 - π + (-(2 x^6)/3) right bracketing bar _0^1 + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
 (-(2 x^6)/3) right bracketing bar _0^1 = (-(2 1^6)/3) - (-(2 0^6)/3) = -2/3:
 = -11/21 - π + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^4 is x^5/5:
 = -11/21 - π + x^5 right bracketing bar _0^1 - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
 x^5 right bracketing bar _0^1 = 1^5 - 0^5 = 1:
 = 10/21 - π - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^2 is x^3/3:
 = 10/21 - π + (-(4 x^3)/3) right bracketing bar _0^1 + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
 (-(4 x^3)/3) right bracketing bar _0^1 = (-(4 1^3)/3) - (-(4 0^3)/3) = -4/3:
 = -6/7 - π + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of 1 is x:
 = -6/7 - π + 4 x right bracketing bar _0^1
Evaluate the antiderivative at the limits and subtract.
 4 x right bracketing bar _0^1 = 4 1 - 4 0 = 4:
Answer: |= 22/7 - π
 

Mar 31, 2017
 #1
avatar+118723 
+1
Mar 31, 2017
 #7
avatar+118723 
+2
Mar 31, 2017

1 Online Users