Questions   
Sort: 
 #1
avatar+205 
+2
Apr 10, 2017
 #2
avatar+33661 
+2
Apr 10, 2017
 #1
avatar
+1

Compute the definite integral:
 integral_0^π sin^2(x) cos^2(x) dx
Write cos^2(x) as 1 - sin^2(x):
 = integral_0^π sin^2(x) (1 - sin^2(x)) dx
Expanding the integrand sin^2(x) (1 - sin^2(x)) gives sin^2(x) - sin^4(x):
 = integral_0^π (sin^2(x) - sin^4(x)) dx
Integrate the sum term by term and factor out constants:
 = - integral_0^π sin^4(x) dx + integral_0^π sin^2(x) dx
Use the reduction formula, integral sin^m(x) dx = -(cos(x) sin^(m - 1)(x))/m + (m - 1)/m integral sin^(-2 + m)(x) dx, where m = 4:
 = 1/4 sin^3(x) cos(x) right bracketing bar _0^π + 1/4 integral_0^π sin^2(x) dx
Evaluate the antiderivative at the limits and subtract.
 1/4 sin^3(x) cos(x) right bracketing bar _0^π = (1/4 sin^3(π) cos(π)) - 1/4 sin^3(0) cos(0) = 0:
 = 1/4 integral_0^π sin^2(x) dx
Write sin^2(x) as 1/2 - 1/2 cos(2 x):
 = 1/4 integral_0^π (1/2 - 1/2 cos(2 x)) dx
Integrate the sum term by term and factor out constants:
 = -1/8 integral_0^π cos(2 x) dx + 1/8 integral_0^π 1 dx
For the integrand cos(2 x), substitute u = 2 x and du = 2 dx.
This gives a new lower bound u = 2 0 = 0 and upper bound u = 2 π:
 = -1/16 integral_0^(2 π) cos(u) du + 1/8 integral_0^π 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of cos(u) is sin(u):
 = (-(sin(u))/16) right bracketing bar _0^(2 π) + 1/8 integral_0^π 1 dx
Evaluate the antiderivative at the limits and subtract.
 (-(sin(u))/16) right bracketing bar _0^(2 π) = (-1/16 sin(2 π)) - (-(sin(0))/16) = 0:
 = 1/8 integral_0^π 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of 1 is x:
 = x/8 right bracketing bar _0^π
Evaluate the antiderivative at the limits and subtract.
 x/8 right bracketing bar _0^π = π/8 - 0/8 = π/8:
Answer: | = π/8

Apr 10, 2017
 #1
avatar+12530 
0
Apr 10, 2017

0 Online Users