Questions   
Sort: 
 #1
avatar+9481 
+1

I answered a question nearly identical to this yesterday, but maybe my answer was unclear.

Here is another way of looking at it.

 

-12((3x-4)/(3)-(3-4x)/(4)-(6-2x)/(6))        In fraction form, this is

 

\(=\,-12(\frac{3x-4}{3}-\frac{3-4x}{4}-\frac{6-2x}{6})\)

 

\(=\,-12[\frac13(3x-4)-\frac14(3-4x)-\frac16(6-2x)]\)        We can distribute the  -12  like this...

 

\(=\,(-12)(\frac13)(3x-4)-(-12)(\frac14)(3-4x)-(-12)(\frac16)(6-2x) \\~\\ =\,(\frac{-12}3)(3x-4)-(\frac{-12}4)(3-4x)-(\frac{-12}6)(6-2x) \\~\\ =\,(-4)(3x-4)-(-3)(3-4x)-(-2)(6-2x) \\~\\ =\,(-4)(3x-4)+(3)(3-4x)+(2)(6-2x) \\~\\ =\,(-4)(3x)+(-4)(-4)+(3)(3)+(3)(-4x)+(2)(6)+(2)(-2x) \\~\\ =\,-12x+16+9-12x+12-4x \\~\\ =\,-28x+37\)

.
Oct 27, 2017
 #4
 #3
Oct 26, 2017
 #2
 #1
avatar+9481 
+1

We can graph it using Desmos's calculator,  here .

 

It crosses the y-axis at  (0, -3) , so the y-intercept is  -3 .

 

It crosses the x-axis at  (1, 0) , so the x-intercept is  1 .

 

Its degree is  3 , so it can't have more than  2  turning points.

So we know that there's not another x-intercept way out that we can't see.   smiley

Oct 26, 2017
 #1
avatar+9481 
+4
Oct 26, 2017
 #2
avatar+476 
+1
Oct 26, 2017
 #1
avatar+129907 
+1
Oct 26, 2017

0 Online Users