Questions   
Sort: 
 #3
avatar+26394 
+1

determining the sum of this arithmetic series?

5 + 8 + 11 + ... + 53

 

arithmetic series:

\(\begin{array}{lrrrrrrrrrrrrrrrrr} & {\color{red}d_0 = 5} && 8 && 11 && 14 && 17 && \cdots && 53 \\ \text{1. Difference } && {\color{red}d_1 = 3} && 3 && 3 && 3 && \cdots && 3 \\ \end{array}\)

 

Formula:

\(\begin{array}{|rcl|} \hline a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } \\ s &=& \binom{n}{1}\cdot {\color{red}d_0 } + \binom{n}{2}\cdot {\color{red}d_1 } \\ \hline \end{array}\)

 

n = ?

\(\begin{array}{|rcl|} \hline a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } \quad & | \quad a_n = 53 \quad {\color{red}d_0 } = 5 \quad {\color{red}d_1 } = 3 \\\\ 53 &=& \binom{n-1}{0}\cdot {\color{red}5 } + \binom{n-1}{1}\cdot {\color{red}3 } \\ 53 &=& 5+(n-1)\cdot 3 \\ 53 &=& 2 +3n \quad & | \quad -2\\ 51 &=& 3n \quad & | \quad :3 \\ 17 &=& n \\ \mathbf{n} &\mathbf{=}& \mathbf{17} \\ \hline \end{array} \)

 

sum (s) = ?

\(\begin{array}{|rcl|} \hline s &=& \binom{n}{1}\cdot {\color{red}d_0 } + \binom{n}{2}\cdot {\color{red}d_1 } \quad & | \quad n = 17 \quad {\color{red}d_0 } = 5 \quad {\color{red}d_1 } = 3 \\\\ s &=& \binom{17}{1}\cdot {\color{red}5 } + \binom{17}{2}\cdot {\color{red}3 } \\ s &=& 17\cdot 5 + \frac{17}{2} \cdot \frac{16}{1}\cdot 3 \\ s &=& 17\cdot \left(5+\frac{16}{2}\cdot 3 \right) \\ s &=& 17\cdot(5+ 24) \\ s &=& 17\cdot 29 \\ \mathbf{s} &\mathbf{=}& \mathbf{493} \\ \hline \end{array}\)

 

The sum is 493

 

laugh

Nov 1, 2017
 #1
avatar+130020 
+1

Let the point  c on the x axis be  (x, 0)

 

ac + cb  can be represented as D =

 

D  =  sqrt [ (x + 1)^2 + 6^2 ]  + sqrt [ (14- x)^2 + 9^2]

 

D = [  x^2 + 2x  + 37 ]^(1/2) + [ x^2  - 28x + 277 ]^(1/2)

 

Take the derivative and set to 0

 

D'  =  [ 2x + 2] / ( 2  [  x^2 + 2x  + 37 ]^(1/2))  +  [ 2x - 28] / (2   [ x^2  - 28x + 277 ]^(1/2) )  = 0

 

[ x + 1 ] /   [  x^2 + 2x  + 37 ]^(1/2)  +  [ x - 14] / [ x^2  - 28x + 277 ]^(1/2)  = 0

 

[ x + 1 ] /   [  x^2 + 2x  + 37 ]^(1/2)  =   [ 14 - x ] /  [ x^2  - 28x + 277 ]^(1/2)

 

Square both sides

 

[ x^2 + 2x + 1 ] /  [  x^2 + 2x  + 37 ] =  [ x^2 - 28x + 196] /  [  x^2 -28x + 277 ]

 

Cross - multiply

 

[ x^2 + 2x + 1 ] [  x^2 -28x + 277 ]  =  [ x^2 - 28x + 196]  [  x^2 + 2x  + 37 ]

 

Simplify

 

x^4 - 26 x^3 + 222 x^2 + 526 x + 277  =  x^4 - 26 x^3 + 177 x^2 - 644 x + 7252

 

45x^2  + 1170x  - 6975  =  0

 

9x^2  + 234x -  1395  =  0 

 

Solving this for  x produces   x = 5  or x = -31  [ reject the second solution ]

 

So.....the distance is minimized when   c  =   (5, 0 )

 

We can prove this if

 

arctan  [  6/[5- -1] ]  =  arctan [ 9 / [ 14 - 5] ]   is true

 

arctan  [  6/6]  =  arctan [ 9/9]

 

arctan 1  =   arctan 1         and it is true

 

And the minimum distance  ac + cb  is

 

sqrt [ (5 + 1)^2 + 6^2 ]  + sqrt [ (14- 5)^2 + 9^2] =

 

√ 72  +  √ 162  =

 

√ 2  [ 6 + 9]  =

 

15√ 2  units  

 

 

 

 

 

cool cool cool

Nov 1, 2017
 #2
avatar+895 
+1
Nov 1, 2017

1 Online Users