Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #3
avatar+26396 
+1

determining the sum of this arithmetic series?

5 + 8 + 11 + ... + 53

 

arithmetic series:

d0=58111417531. Difference d1=33333

 

Formula:

an=(n10)d0+(n11)d1s=(n1)d0+(n2)d1

 

n = ?

an=(n10)d0+(n11)d1|an=53d0=5d1=353=(n10)5+(n11)353=5+(n1)353=2+3n|251=3n|:317=nn=17

 

sum (s) = ?

s=(n1)d0+(n2)d1|n=17d0=5d1=3s=(171)5+(172)3s=175+1721613s=17(5+1623)s=17(5+24)s=1729s=493

 

The sum is 493

 

laugh

Nov 1, 2017
 #1
avatar+130474 
+1

Let the point  c on the x axis be  (x, 0)

 

ac + cb  can be represented as D =

 

D  =  sqrt [ (x + 1)^2 + 6^2 ]  + sqrt [ (14- x)^2 + 9^2]

 

D = [  x^2 + 2x  + 37 ]^(1/2) + [ x^2  - 28x + 277 ]^(1/2)

 

Take the derivative and set to 0

 

D'  =  [ 2x + 2] / ( 2  [  x^2 + 2x  + 37 ]^(1/2))  +  [ 2x - 28] / (2   [ x^2  - 28x + 277 ]^(1/2) )  = 0

 

[ x + 1 ] /   [  x^2 + 2x  + 37 ]^(1/2)  +  [ x - 14] / [ x^2  - 28x + 277 ]^(1/2)  = 0

 

[ x + 1 ] /   [  x^2 + 2x  + 37 ]^(1/2)  =   [ 14 - x ] /  [ x^2  - 28x + 277 ]^(1/2)

 

Square both sides

 

[ x^2 + 2x + 1 ] /  [  x^2 + 2x  + 37 ] =  [ x^2 - 28x + 196] /  [  x^2 -28x + 277 ]

 

Cross - multiply

 

[ x^2 + 2x + 1 ] [  x^2 -28x + 277 ]  =  [ x^2 - 28x + 196]  [  x^2 + 2x  + 37 ]

 

Simplify

 

x^4 - 26 x^3 + 222 x^2 + 526 x + 277  =  x^4 - 26 x^3 + 177 x^2 - 644 x + 7252

 

45x^2  + 1170x  - 6975  =  0

 

9x^2  + 234x -  1395  =  0 

 

Solving this for  x produces   x = 5  or x = -31  [ reject the second solution ]

 

So.....the distance is minimized when   c  =   (5, 0 )

 

We can prove this if

 

arctan  [  6/[5- -1] ]  =  arctan [ 9 / [ 14 - 5] ]   is true

 

arctan  [  6/6]  =  arctan [ 9/9]

 

arctan 1  =   arctan 1         and it is true

 

And the minimum distance  ac + cb  is

 

sqrt [ (5 + 1)^2 + 6^2 ]  + sqrt [ (14- 5)^2 + 9^2] =

 

√ 72  +  √ 162  =

 

√ 2  [ 6 + 9]  =

 

15√ 2  units  

 

 

 

 

 

cool cool cool

Nov 1, 2017
 #2
avatar+895 
+1
Nov 1, 2017

0 Online Users