Let the point c on the x axis be (x, 0)
ac + cb can be represented as D =
D = sqrt [ (x + 1)^2 + 6^2 ] + sqrt [ (14- x)^2 + 9^2]
D = [ x^2 + 2x + 37 ]^(1/2) + [ x^2 - 28x + 277 ]^(1/2)
Take the derivative and set to 0
D' = [ 2x + 2] / ( 2 [ x^2 + 2x + 37 ]^(1/2)) + [ 2x - 28] / (2 [ x^2 - 28x + 277 ]^(1/2) ) = 0
[ x + 1 ] / [ x^2 + 2x + 37 ]^(1/2) + [ x - 14] / [ x^2 - 28x + 277 ]^(1/2) = 0
[ x + 1 ] / [ x^2 + 2x + 37 ]^(1/2) = [ 14 - x ] / [ x^2 - 28x + 277 ]^(1/2)
Square both sides
[ x^2 + 2x + 1 ] / [ x^2 + 2x + 37 ] = [ x^2 - 28x + 196] / [ x^2 -28x + 277 ]
Cross - multiply
[ x^2 + 2x + 1 ] [ x^2 -28x + 277 ] = [ x^2 - 28x + 196] [ x^2 + 2x + 37 ]
Simplify
x^4 - 26 x^3 + 222 x^2 + 526 x + 277 = x^4 - 26 x^3 + 177 x^2 - 644 x + 7252
45x^2 + 1170x - 6975 = 0
9x^2 + 234x - 1395 = 0
Solving this for x produces x = 5 or x = -31 [ reject the second solution ]
So.....the distance is minimized when c = (5, 0 )
We can prove this if
arctan [ 6/[5- -1] ] = arctan [ 9 / [ 14 - 5] ] is true
arctan [ 6/6] = arctan [ 9/9]
arctan 1 = arctan 1 and it is true
And the minimum distance ac + cb is
sqrt [ (5 + 1)^2 + 6^2 ] + sqrt [ (14- 5)^2 + 9^2] =
√ 72 + √ 162 =
√ 2 [ 6 + 9] =
15√ 2 units