Questions   
Sort: 
 #7
avatar+26396 
+3

find the sum of n terms of the series:

 

A) 1+ 2x + 3x^2 + 4x^3 +.....

like Euler:

\(\begin{array}{|rcll|} \hline \mathbf{s_n} &\mathbf{=}& \mathbf{1+ 2x + 3x^2 + 4x^3 +\ldots +n x^{n-1}} \quad & | \quad \cdot dx \\ s_n dx &=& dx+ 2xdx + 3x^2dx + 4x^3dx +\ldots +nx^{n-1}dx \quad & | \quad \int{} \\ \int{s_n dx} &=& x+ 2\frac{x^2}{2} + 3\frac{x^3}{3} + 4\frac{x^4}{4} +\ldots +n\frac{x^n}{n} \\ \int{s_n dx} &=& x+ x^2 + x^3 + x^4 +\ldots + x^n = \frac{x-x^{n+1}} {1-x} \\ \int{s_n dx} &=& \frac{x-x^{n+1}} {1-x} \\ \int{s_n dx}&=& \frac{x-x^{n+1}} {1-x} = [x-x^{n+1}][(1-x)^{-1}] \quad & | \quad \text{derivate} \\ s_n &=& [1-(n+1)x^n](1-x)^{-1}+ (x-x^{n+1})(-1)(1-x)^{-2}(-1) \\ s_n &=& \frac{1-(n+1)x^n} {1-x} + \frac{x-x^{n+1}} {(1-x)^2} \\ s_n &=& \frac{1-(n+1)x^n} {1-x} \left(\frac{1-x}{1-x}\right) + \frac{x-x^{n+1}} {(1-x)^2} \\ s_n &=& \frac{[1-(n+1)x^n](1-x)+x-x^{n+1}} {(1-x)^2} \\ s_n &=& \frac{1-x-(n+1)x^n+(n+1)x^{n+1}+x-x^{n+1}} {(1-x)^2} \\ s_n &=& \frac{1 -(n+1)x^n+(n+1)x^{n+1} -x^{n+1}} {(1-x)^2} \\ s_n &=& \frac{1 -(n+1)x^n+[-1+(n+1)]x^{n+1} } {(1-x)^2} \\ \mathbf{s_n} & \mathbf{=}& \mathbf{\dfrac{1 -(n+1)x^n+n x^{n+1} } {(1-x)^2} } \\ \hline \end{array}\)

 

B ) 1.2^2 + 2.3^2 + 3.4^2 + ......

\(\begin{array}{|rcll|} \hline \mathbf{s_n} &\mathbf{=}& \mathbf{1\cdot 2^2 + 2\cdot3^2 + 3\cdot4^2 +\ldots +n \cdot (n+1)^2 } \\ s_n &=& \sum \limits_{k=1}^{n} k \cdot (k+1)^2 \\ &=& \sum \limits_{k=1}^{n} k \cdot (k^2+2k+1) \\ &=& \sum \limits_{k=1}^{n} (k^3+2k^2+k) \\ &=& \sum \limits_{k=1}^{n} (k^3) + \sum \limits_{k=1}^{n} (2k^2) + \sum \limits_{k=1}^{n} (k) \\ &=& \sum \limits_{k=1}^{n} (k^3) + 2\sum \limits_{k=1}^{n} (k^2) + \sum \limits_{k=1}^{n} (k) \\ && \begin{array}{|rcll|} \hline \sum \limits_{k=1}^{n} (k^3) &=& 1^3+2^3+3^3+ \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 \\ \sum \limits_{k=1}^{n} (k^2) &=& 1^2+2^2+3^2+ \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \\ \sum \limits_{k=1}^{n} (k) &=& 1+2+3+ \ldots + n = \frac{n(n+1)}{2} \\ \hline \end{array} \\ &=& \left(\frac{n(n+1)}{2}\right)^2 + 2\cdot \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \\ &=& \left(\frac{n(n+1)}{2}\right)\left( \frac{n(n+1)}{2} + \frac23\cdot(2n+1) +1\right) \\ &=& \left(\frac{n(n+1)}{2}\right)\left(\frac{3n(n+1)+4(2n+1)+6}{6}\right) \\ &=& \left(\frac{n(n+1)}{12}\right) \Big( 3n(n+1)+4(2n+1)+6 \Big) \\ &=& \frac{n(n+1)[3n(n+1)+4(2n+1)+6]}{12} \\ &=& \frac{n(n+1)(3n^2+3n+8n+4+6)}{12} \\ &=& \frac{n(n+1)(3n^2+11n+10)}{12} \\ \mathbf{s_n} &\mathbf{=}& \mathbf{\dfrac{n(n+1)(n+2)(3n+5)}{12}} \\ \hline \end{array}\)

 

laugh

Nov 13, 2017
 #3
avatar+118690 
+2

Thanks for complementing me on my answer Chris. 

I'm sure you know better than most that when we put a lot of effort into an answer like this we do want someone to notice.

I mean we get our own satisfaction but still it is nice if we have a small appreciative audience as well.   laugh

You provide so many excellent geometry answers, I did not think you would notice this one.  laughlaughlaugh

 

 

".I did not know the thing about the exterior angle of a cyclic quad = the opposite interior angle"

I kind of extrapolated that ...

One of the most important features of a cyclic quad is that opposite angles are supplementary.

I was going to use that.

But then I realised that since this is true it means, by extension, that the exterior angle of a cyclic quad is equal to the opposite internal angle. 

It just meant that I could skip one step in the proof, that is all. :)

------------------------------------

 

With these proofs I am sometimes a bit confused about when I should use the 'congruent to' sign and when I should just use the equal sign. Do you have any confusion over this?

 

-----------------------------------

Did you see Rosala's question about series that are combinations of Arithmetic Progressions and Geometric progressions?

She asked for the formula derivation to be explained and then she had 2 questions using it.

I answered the first, but I couldn't do the second.

It was 'new' maths for me and quite interesting. 

I'll see if I can find the link.

Arr, I can see Heureka is answering it now :))

https://web2.0calc.com/questions/this-is-so-annoying-pls-help-me

Nov 13, 2017
 #1
avatar+130081 
+2
Nov 13, 2017
 #1
avatar+118690 
+2

I have labeled the points T, X and R as shown in my diagram.

I have also let  \(\angle DPX =\alpha\)   \(\;\;and\;\;\angle AQX=\beta\;\;and \;\;\angle ADC=\theta \) 

 

Now:

\(\angle DPX\cong \angle CPX= \alpha \qquad \qquad \overline{PX}\;\;bisects \angle DPC\\ \angle AQX\cong \angle DQX= \beta \qquad \qquad \overline{QX}\;\;bisects \angle AQD\\~\\ \angle ADC\cong \angle QBR=\theta \\ \qquad \text{Exterior angle of cyclic quad= opposite internal angle}\\~\\ \angle BRX=\angle QBR+\angle BQR=\theta + \beta\\ \qquad \text{Exterior angle of triangle = sum of opp internal angles in } \triangle BRQ\\~\\ \angle ATX=\angle TDQ+\angle TQD = \theta+\beta\\ \qquad \text{Exterior angle of triangle = sum of opp internal angles in } \triangle TQD\\~\\ \therefore \angle BRX=\angle ATX\\\)

 

 

 

\(Consider\;\; \triangle PXT \;\;and\;\; \triangle PXR\\ \angle PTX=\angle PRX=\theta + \beta\\ \angle TPX=\angle RTX=\alpha PX = PX \;\; common side\\ \therefore \triangle PXT=\triangle PXR \\ \qquad \text{Two angles and corresponding side test.}\\~\\ \therefore PXT=\angle PXR\\ \qquad \text{Corresponding angles in congruent triangles}\\ But \;\;\angle PXT+\angle PXR=180^\circ \\\qquad \text{Adjacent supplementary angles}\\ \therefore \angle PXT=\angle PXR=90^\circ\\ \therefore QT\;\;and \;\;PX \text{ are perpendicular.}\)

 

\(\text{Therefore the angle bisectors of  DPC and  AQD are perpendicular.         QED}\)

 

[ Well that is assuming I have not put letters in stupid places anyway ]

Nov 13, 2017
 #5
avatar
+1
Nov 13, 2017

4 Online Users

avatar
avatar