Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #2
avatar+1443 
0
Dec 5, 2017
 #2
avatar+1420 
+1
 #5
avatar
0

Here's an alternative, vector type solution.

 

Let ˆı be a unit vector in the direction PQ and ˆȷ a unit vector perpendicular (upwards in the diagram), to this.

 

Then, PB_=2cos(60)ˆı+2sin(60)ˆȷ=ˆı+3ˆȷ , and PC_=3ˆı . (All angles in degrees.)

 

In the triangle PBC, PB_+BC_=PC_, so BC_=3ˆı(ˆı+3ˆȷ)=2ˆı3ˆȷ .

 

Let the vector CA_=αˆı+βˆȷ , then since CA is at right angles to BC, the scalar product CA_.BC_=0 ,

so,  2α3β=0 ...................... (1).

 

The vector AQ_ will be some fraction of the vector RQ_ , AQ_=kRQ_, say,

so AQ_=k(5cos(60)ˆı5sin(60)ˆȷ)=k(52ˆı532ˆȷ).

 

Finally, (almost), in the triangle CAQ,  CA_+AQ_=CQ_ ,

so, αˆı+βˆȷ+k(52ˆı532ˆȷ)=2ˆı .

 

Equating coefficients, α+5k2=2 so, α=25k2,

and β5k32=0soβ=5k32.

 

Substituting into (1),  2(25k2)3(5k32)=0 , so 425k2=0,k=825,

so AQ=825×5=85=1.6 .

 

Tiggsy

Dec 5, 2017
 #6
avatar+956 
+1
Dec 5, 2017

0 Online Users