Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #1
avatar
+1

Solve for x:

x^4 + 10 x + 25 = 0

 

Subtract 10 x - 10 x^2 from both sides:

x^4 + 10 x^2 + 25 = 10 x^2 - 10 x

 

x^4 + 10 x^2 + 25 = (x^2 + 5)^2:

(x^2 + 5)^2 = 10 x^2 - 10 x

 

Add 2 (x^2 + 5) λ + λ^2 to both sides:

(x^2 + 5)^2 + 2 λ (x^2 + 5) + λ^2 = -10 x + 10 x^2 + 2 λ (x^2 + 5) + λ^2

 

(x^2 + 5)^2 + 2 λ (x^2 + 5) + λ^2 = (x^2 + 5 + λ)^2:

(x^2 + 5 + λ)^2 = -10 x + 10 x^2 + 2 λ (x^2 + 5) + λ^2

 

-10 x + 10 x^2 + 2 λ (x^2 + 5) + λ^2 = (2 λ + 10) x^2 - 10 x + 10 λ + λ^2:

(x^2 + 5 + λ)^2 = x^2 (2 λ + 10) - 10 x + 10 λ + λ^2

 

Complete the square on the right hand side:

(x^2 + 5 + λ)^2 = (x sqrt(2 λ + 10) - 5/sqrt(2 λ + 10))^2 + (4 (2 λ + 10) (λ^2 + 10 λ) - 100)/(4 (2 λ + 10))

 

Solve using the quadratic formula:

x = 1/2 (sqrt(2) sqrt(λ + 5) + sqrt(2) sqrt(-(25 + 10 λ + λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5))) or x = 1/2 (sqrt(2) sqrt(λ + 5) - sqrt(2) sqrt(-(25 + 10 λ + λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5))) or x = 1/2 (sqrt(2) sqrt((-25 - 10 λ - λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5)) - sqrt(2) sqrt(λ + 5)) or x = 1/2 (-sqrt(2) sqrt(λ + 5) - sqrt(2) sqrt((-25 - 10 λ - λ^2 + 5 sqrt(2) sqrt(λ + 5))/(λ + 5))) where λ = -5 + (5 2^(2/3))/(3/5 (i sqrt(1119) + 9))^(1/3) + (5/6)^(2/3) (i sqrt(1119) + 9)^(1/3)

 

Substitute λ = -5 + (5 2^(2/3))/(3/5 (i sqrt(1119) + 9))^(1/3) + (5/6)^(2/3) (i sqrt(1119) + 9)^(1/3) and approximate:

x = -1.61762 - 1.035 i or x = -1.61762 + 1.035 i or x = 1.61762 - 2.04014 i or x = 1.61762 + 2.04014 i

Jan 26, 2018
 #1
avatar+26396 
+1

Larry has 4-cent stamps and 9-cent stamps, which he can combine to produce various amounts of postage.
For example, he can make 40 cents by using four 9-cent stamps and a 4-cent stamp, or by using ten 4-cent stamps.
However, there are some amounts of postage he can't make exactly, such as 10 cents.

 

What is the largest number of cents that Larry CANNOT make exactly from a combination of 4- and/or 9-cent stamps?

 

Explain how you know your answer is correct. (You should explain two things:
why Larry can't make the amount of your answer, and
why he CAN make any bigger amount.)

 

{4}{8,9}{12,13}{16,17,18}{20,21,22}23{24,25,26,2724+4=28,25+4=29,26+4=30,27+4=31}{28,29,30,3128+4=32,29+4=23,30+4=34,31+4=35}{32,33,34,3532+4=36,33+4=37,34+4=38,35+4=39} and so on{reachable}not reachable

 

23 is the largest number of cents that Larry CANNOT make exactly from a combination of 4- and/or 9-cent stamps.

After four consecutive reachable numbers, 24, 25, 26, 27, he CAN make any bigger amount.

 

laugh

Jan 26, 2018
 #1
avatar+33654 
+4
Jan 26, 2018
 #1
avatar+26396 
+1

Graph the image of the figure after a dilation with a scale factor of 2 centered at (−2, −2) .

 

 

Formula dilation:A=(ACCenter)λ+CCenterA before dilation λ scale factor =2A after dilation CCenter center at (22) 

 

A=(ACCenter)λ+CCenter=Aλ+CCenter(1λ)=λA+(1λ)CCenterFormula dilation:A=λA+(1λ)CCenter(1λ)CCenter=(12)(22)(1λ)CCenter=(1)(22)(1λ)CCenter=(22)

 

A=λA+(22)A=(42)B=λB+(22)B=(52)C=λC+(22)C=(13)D=λD+(22)D=(11)

 

A=2(42)+(22)A=(62)B=2(52)+(22)B=(86)C=2(13)+(22)C=(08)D=2(11)+(22)D=(44)

 

Point (-4, -2 ) goes to (-6,-2)

Point (-5, 2) goes to (-8. 6)

Point ( -1, 3) goes to (0, 8)

Point ( 1, 1 ) goes to (4, 4 )

 

 

laugh

Jan 26, 2018

0 Online Users