Find a polynomial $f(x)$ of degree $5$ such that both of these properties hold:
$f(x)-1$ is divisible by $(x-1)^3$.
$f(x)$ is divisible by $x^3$.

1. f(x) is divisible by x3 ?
Let f(x)=a(x−x1)(x−x2)(x−x3)(x−x4)(x−x5) is a polynomial of degree 5.If f(x) is divisible by x3, than x1=x2=x3=0f(x)=a(x−0)(x−0)(x−0)(x−x4)(x−x5)f(x)=ax3(x−x4)(x−x5) This polynom is divisible by x3expand to:f(x)=ax5−a(x4+x5)x4+ax4x5x3Let A=a, B=a(x4+x5), and C=ax4x5 finally we have:f(x)=Ax5+Bx4+Cx3(1) This polynom is divisible by x3
2. f(x)−1 is divisible by (x−1)3 ?
Say P(x) is a polynom divisible by (x−1)3 .Set:P(x)=b⋅(x−1)3The root is x=1 soP(1)=b(1−1)3=0Set also: P′(x)=3b(x−1)2soP′(1)=3b(1−1)2=0Set finally: P″(x)=6b(x−1)soP″(1)=6b(1−1)2=0ConclusionIf P(x) is divisible by (x−1)3, so P(1)=P′(1)=P″(1)=0(2) at the root x=1
We set:1)f(x)−1=P(x)|f(x)−1 and P(x) are divisible by (x−1)3 f(1)−1=P(1)=0|→(2)2)(f(x)−1)′=P′(x)f′(x)=P′(x)f′(1)=P′(1)=0|→(2)3)(f(x)−1)″=P″(x)f″(x)=P″(x)f″(1)=P″(1)=0|→(2)
We see:f(1)−1=0(3)f′(1)=0(4)f″(1)=0(5)
We calculate:f(x)=Ax5+Bx4+Cx3f(x)−1=Ax5+Bx4+Cx3−1f(1)−1=A+B+C−1=0|→(3)f′(x)=5Ax4+4Bx3+3Cx2f′(1)=5A+4B+3C=0|→(4)f″(x)=20Ax3+12Bx2+6Cxf″(1)=20A+12B+6C=0|→(5)
Solve the Simultaneous Equations, we calculate A , B , C :A+B+C−1=0⇒A+B+C=15A+4B+3C=020A+12B+6C=0
Cramer's Rule:
1⋅A+1⋅B+1⋅C=15⋅A+4⋅B+3⋅C=020⋅A+12⋅B+6⋅C=0Determinant denominator=|11154320126|=1⋅4⋅6+5⋅12⋅1+20⋅1⋅3−20⋅4⋅1−1⋅12⋅3−5⋅1⋅6=24+60+60−80−36−30=−2
A=|1110430126|−2=1⋅4⋅6−1⋅12⋅3−2=−12−2A=6B=|1115032006|−2=20⋅1⋅3−5⋅1⋅6−2=30−2B=−15C=|11154020120|−2=5⋅12⋅1−20⋅4⋅1−2=−20−2C=10
The Polynom f(x)=Ax5+Bx4+Cx3 with A=6, B=−15, and C=10f(x)=6x5−15x4+10x3
Proof:
f(3)=6⋅35−15⋅34+10⋅33=1458−1215+270=513f(3)33=51333=19 ✓f(3)−1(3−1)3=513−123=5128=64 ✓
