Processing math: 100%
 
  Questions   
Sort: 
 #3
avatar+26396 
+2

Find all real x that satisfy (2^x - 4)^3 + (4^x - 2)^3 = (4^x + 2^x - 6)^3

 

(2x4)3+(4x2)3=(4x+2x6)3We substitute: a=2x, b=4x, c=4, d=2(a+c)3+(b+d)3=(a+b+c+d)3a3+3ac(a+c)+c3+b3+3bd(b+d)+d3=a3+b3+c3+d3+6abc+6abd+6acd+6bcd+3a2b+3a2c+3a2d+3ab2+3ac2+3ad2+3b2c+3b2d+3bc2+3bd2+3c2d+3cd2a3+b3+c3+d3+3a2c+3ac2+3b2d+3bd2=a3+b3+c3+d3+6abc+6abd+6acd+6bcd+3a2b+3a2c+3a2d+3ab2+3ac2+3ad2+3b2c+3b2d+3bc2+3bd2+3c2d+3cd20=6abc+6abd+6acd+6bcd+3a2b+3a2d+3ab2+3ad2+3b2c+3bc2+3c2d+3cd2 | :30=2abc+2abd+2acd+2bcd+a2b+a2d+ab2+ad2+b2c+bc2+c2d+cd20=a2(b+d)+b2(a+c)+c2(b+d)+d2(a+c)+2bd(a+c)+2ac(b+d)0=(b+d)(a2+2ac+c2)+(a+c)(b2+bd+d2)0=(b+d)(a+c)2+(a+c)(b+d)20=(b+d)(a+c)(a+b+c+d)

 

Solution:

b+d=04x2=04x=222x=212x=1x1=12

 

a+c=02x4=02x=42x=22x=2x2=2

 

a+b+c+d=02x+4x6=0(2x2)(2x+3)=02x2=02x=21x=1x3=12x+3=02x=3xlog(2)=log(3)| no solution, log(3) complex 

 

laugh

Jan 25, 2018
 #1
avatar+26396 
+2

Find an ordered triple (x,y,z) of real numbers satisfying x<= y<= z and the system of equations
sqrtx + sqrty +sqrtz = 10
x+y+z=38
(sqrtxyz) = 30

 

(1)x+y+z=10(2)x+y+z=38(3)xyz=30

 

1.

(x+y+z)2=102x+y+z=38+2(xy+xz+yz)=10038+2(xy+xz+yz)=100|382(xy+xz+yz)=62|:2(4)xy+xz+yz=31

 

We substitute:x1=x or x=x21x2=y or y=x22x3=z or z=x23

 

x1+x2+x3=x+y+z=10x1x2x3=xyz=30x1x2+x1x3+x2x3=xy+xz+yz=31

 

 

We set:p=(x1+x2+x3)=10q=x1x2+x1x3+x2x3=31r=(x1x2x3)=30

 

The cubic equation:x310x2+31x30=0

 

The first solution is x1=2

 

Long division:

x28x+15=(x3)(x5)

so x2=3 and x3=5

 

x1=2x=x21x=4x2=3y=x22y=9x3=5z=x23z=25

 

The ordered triple (4, 9, 25) of real numbers satisfying 4925 and the system of equations.

 

laugh

Jan 25, 2018
 #1
avatar+26396 
+3

Find a polynomial $f(x)$ of degree $5$ such that both of these properties hold:
$f(x)-1$ is divisible by $(x-1)^3$.
$f(x)$ is divisible by $x^3$.


1.  f(x) is divisible by x3  ?

 

Let f(x)=a(xx1)(xx2)(xx3)(xx4)(xx5) is a polynomial of degree 5.If f(x) is divisible by x3, than x1=x2=x3=0f(x)=a(x0)(x0)(x0)(xx4)(xx5)f(x)=ax3(xx4)(xx5) This polynom is divisible by x3expand to:f(x)=ax5a(x4+x5)x4+ax4x5x3Let A=a B=a(x4+x5), and  C=ax4x5 finally we have:f(x)=Ax5+Bx4+Cx3(1) This polynom is divisible by x3

 

2.  f(x)1 is divisible by (x1)3  ?

 

Say P(x) is a polynom divisible by (x1)3 .Set:P(x)=b(x1)3The root is x=1 soP(1)=b(11)3=0Set also: P(x)=3b(x1)2soP(1)=3b(11)2=0Set finally: P(x)=6b(x1)soP(1)=6b(11)2=0ConclusionIf P(x) is divisible by (x1)3, so P(1)=P(1)=P(1)=0(2) at the root x=1 

 

We set:1)f(x)1=P(x)|f(x)1 and P(x) are divisible by (x1)3 f(1)1=P(1)=0|(2)2)(f(x)1)=P(x)f(x)=P(x)f(1)=P(1)=0|(2)3)(f(x)1)=P(x)f(x)=P(x)f(1)=P(1)=0|(2)

 

We see:f(1)1=0(3)f(1)=0(4)f(1)=0(5)

 

We calculate:f(x)=Ax5+Bx4+Cx3f(x)1=Ax5+Bx4+Cx31f(1)1=A+B+C1=0|(3)f(x)=5Ax4+4Bx3+3Cx2f(1)=5A+4B+3C=0|(4)f(x)=20Ax3+12Bx2+6Cxf(1)=20A+12B+6C=0|(5)

 

Solve the Simultaneous Equations, we calculate A B C  :A+B+C1=0A+B+C=15A+4B+3C=020A+12B+6C=0

 

Cramer's Rule:

1A+1B+1C=15A+4B+3C=020A+12B+6C=0Determinant denominator=|11154320126|=146+5121+201320411123516=24+60+60803630=2

 

A=|1110430126|2=14611232=122A=6B=|1115032006|2=20135162=302B=15C=|11154020120|2=512120412=202C=10

 

The Polynom f(x)=Ax5+Bx4+Cx3 with A=6 B=15, and  C=10f(x)=6x515x4+10x3

 

Proof:

f(3)=6351534+1033=14581215+270=513f(3)33=51333=19 f(3)1(31)3=513123=5128=64 

 

 

laugh

Jan 25, 2018

1 Online Users