Questions   
Sort: 
 #4
avatar+130104 
+2

5.)

What is the probability that a randomly selected three-digit number has the property that one digit is equal to the product of the other two? Express your answer as a common fraction.

 

To make                            Possible products                  #  of Numbers

0                               2nd, 3rd digits 0..1st digit 1 - 9        9

1                                           11                                        1

2                                           21                                        3

3                                           31                                        3

4                                           14 , 22                                 6                               

5                                           15                                        3

6                                           16   23                                 9                               

7                                            71                                       3

8                                            81   42                                9

9                                            91   33                                6

 

Prob  =   52 / 900    =   13 / 225

 

 

cool cool cool                        

Feb 4, 2018
 #7
avatar+2446 
+3

Well, trial and error appeared to be my friend here. If I was not aware that the original expression could be simplified further, I probably would have made the same conclusion as you did, Melody. It is considered improper to have radicals or fractional exponents in the denominator, so I knew that there was some way to simplify this. My method is really only relevant to this particular problem. You will see why. 

 

Now, let's consider that extra bit on the end, the \(9^\frac{1}{3}=\left(3^2\right)^\frac{1}{3}=3^\frac{2}{3}=3^{\left(\frac{1}{3}\right)^2}\). This means that the denominator can be written like \(1+3^\frac{1}{3}+3^{\left(\frac{1}{3}\right)^2}\), and if I let \(x=3^\frac{1}{3}\), then I can represent the denominator like \(x^2+x+1\). I then made a stunning realization. This required some extraordinary observational skills. 

 

\(x^3-y^3=(x-y)(x^2+xy+y^2)\) I am sure that you are familiar with this. It's the factorization of a difference of cubes. Let's set y equal to 1 and substitute.
\(x^3-1=(x-1)(x^2+x+1)\) Wait a second! Look at what one of the factors is. It's \(x^2+x+1\), which is also the expression of the denominator. This tells me that  if I multiply the trinomial in the denominator by x-1, then I will be left with two terms. This is perfect! I have now found a way to manipulate the denominator into two terms. Let's keep going. Since \(x=3^\frac{1}{3}\), let's just substitute it in. 
\(3^{\left(\frac{1}{3}\right)^3}-1=\left(3^\frac{1}{3}-1\right)\left(3^{\left(\frac{1}{3}\right)^2}+3^\frac{1}{3}+1\right)\) Let's complete the simplification here. The process is quite straightforward when you are comfortable with the law of indices. 
\(3^{\left(\frac{1}{3}\right)^3}-1\\ 3^{\frac{1}{3}*3}-1\\ 3^1-1\\ 3-1\\ 2\) Of course, notice what I multiplied the denominator by in the original problem. It is \(3^\frac{1}{3}-1\).
   

 

So, no, the conjugate is not "magical." The only issue with this thought process is that this will not help you on most types of problems with multi-term denominators. This is just one particular case, and I happened to crack it. 

Feb 3, 2018
 #1
avatar
+1

OK, Young Person!! Ready, GO!!.

 

{{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 6, 5}, {1, 2, 3, 5, 4, 6}, {1, 2, 3, 5, 6, 4}, {1, 2, 3, 6, 4, 5}, {1, 2, 3, 6, 5, 4}, {1, 2, 4, 3, 5, 6}, {1, 2, 4, 3, 6, 5}, {1, 2, 4, 5, 3, 6}, {1, 2, 4, 5, 6, 3}, {1, 2, 4, 6, 3, 5}, {1, 2, 4, 6, 5, 3}, {1, 2, 5, 3, 4, 6}, {1, 2, 5, 3, 6, 4}, {1, 2, 5, 4, 3, 6}, {1, 2, 5, 4, 6, 3}, {1, 2, 5, 6, 3, 4}, {1, 2, 5, 6, 4, 3}, {1, 2, 6, 3, 4, 5}, {1, 2, 6, 3, 5, 4}, {1, 2, 6, 4, 3, 5}, {1, 2, 6, 4, 5, 3}, {1, 2, 6, 5, 3, 4}, {1, 2, 6, 5, 4, 3}, {1, 3, 2, 4, 5, 6}, {1, 3, 2, 4, 6, 5}, {1, 3, 2, 5, 4, 6}, {1, 3, 2, 5, 6, 4}, {1, 3, 2, 6, 4, 5}, {1, 3, 2, 6, 5, 4}, {1, 3, 4, 2, 5, 6}, {1, 3, 4, 2, 6, 5}, {1, 3, 4, 5, 2, 6}, {1, 3, 4, 5, 6, 2}, {1, 3, 4, 6, 2, 5}, {1, 3, 4, 6, 5, 2}, {1, 3, 5, 2, 4, 6}, {1, 3, 5, 2, 6, 4}, {1, 3, 5, 4, 2, 6}, {1, 3, 5, 4, 6, 2}, {1, 3, 5, 6, 2, 4}, {1, 3, 5, 6, 4, 2}, {1, 3, 6, 2, 4, 5}, {1, 3, 6, 2, 5, 4}, {1, 3, 6, 4, 2, 5}, {1, 3, 6, 4, 5, 2}, {1, 3, 6, 5, 2, 4}, {1, 3, 6, 5, 4, 2}, {1, 4, 2, 3, 5, 6}, {1, 4, 2, 3, 6, 5}, {1, 4, 2, 5, 3, 6}, {1, 4, 2, 5, 6, 3}, {1, 4, 2, 6, 3, 5}, {1, 4, 2, 6, 5, 3}, {1, 4, 3, 2, 5, 6}, {1, 4, 3, 2, 6, 5}, {1, 4, 3, 5, 2, 6}, {1, 4, 3, 5, 6, 2}, {1, 4, 3, 6, 2, 5}, {1, 4, 3, 6, 5, 2}, {1, 4, 5, 2, 3, 6}, {1, 4, 5, 2, 6, 3}, {1, 4, 5, 3, 2, 6}, {1, 4, 5, 3, 6, 2}, {1, 4, 5, 6, 2, 3}, {1, 4, 5, 6, 3, 2}, {1, 4, 6, 2, 3, 5}, {1, 4, 6, 2, 5, 3}, {1, 4, 6, 3, 2, 5}, {1, 4, 6, 3, 5, 2}, {1, 4, 6, 5, 2, 3}, {1, 4, 6, 5, 3, 2}, {1, 5, 2, 3, 4, 6}, {1, 5, 2, 3, 6, 4}, {1, 5, 2, 4, 3, 6}, {1, 5, 2, 4, 6, 3}, {1, 5, 2, 6, 3, 4}, {1, 5, 2, 6, 4, 3}, {1, 5, 3, 2, 4, 6}, {1, 5, 3, 2, 6, 4}, {1, 5, 3, 4, 2, 6}, {1, 5, 3, 4, 6, 2}, {1, 5, 3, 6, 2, 4}, {1, 5, 3, 6, 4, 2}, {1, 5, 4, 2, 3, 6}, {1, 5, 4, 2, 6, 3}, {1, 5, 4, 3, 2, 6}, {1, 5, 4, 3, 6, 2}, {1, 5, 4, 6, 2, 3}, {1, 5, 4, 6, 3, 2}, {1, 5, 6, 2, 3, 4}, {1, 5, 6, 2, 4, 3}, {1, 5, 6, 3, 2, 4}, {1, 5, 6, 3, 4, 2}, {1, 5, 6, 4, 2, 3}, {1, 5, 6, 4, 3, 2}, {1, 6, 2, 3, 4, 5}, {1, 6, 2, 3, 5, 4}, {1, 6, 2, 4, 3, 5}, {1, 6, 2, 4, 5, 3}, {1, 6, 2, 5, 3, 4}, {1, 6, 2, 5, 4, 3}, {1, 6, 3, 2, 4, 5}, {1, 6, 3, 2, 5, 4}, {1, 6, 3, 4, 2, 5}, {1, 6, 3, 4, 5, 2}, {1, 6, 3, 5, 2, 4}, {1, 6, 3, 5, 4, 2}, {1, 6, 4, 2, 3, 5}, {1, 6, 4, 2, 5, 3}, {1, 6, 4, 3, 2, 5}, {1, 6, 4, 3, 5, 2}, {1, 6, 4, 5, 2, 3}, {1, 6, 4, 5, 3, 2}, {1, 6, 5, 2, 3, 4}, {1, 6, 5, 2, 4, 3}, {1, 6, 5, 3, 2, 4}, {1, 6, 5, 3, 4, 2}, {1, 6, 5, 4, 2, 3}, {1, 6, 5, 4, 3, 2}, {2, 1, 3, 4, 5, 6}, {2, 1, 3, 4, 6, 5}, {2, 1, 3, 5, 4, 6}, {2, 1, 3, 5, 6, 4}, {2, 1, 3, 6, 4, 5}, {2, 1, 3, 6, 5, 4}, {2, 1, 4, 3, 5, 6}, {2, 1, 4, 3, 6, 5}, {2, 1, 4, 5, 3, 6}, {2, 1, 4, 5, 6, 3}, {2, 1, 4, 6, 3, 5}, {2, 1, 4, 6, 5, 3}, {2, 1, 5, 3, 4, 6}, {2, 1, 5, 3, 6, 4}, {2, 1, 5, 4, 3, 6}, {2, 1, 5, 4, 6, 3}, {2, 1, 5, 6, 3, 4}, {2, 1, 5, 6, 4, 3}, {2, 1, 6, 3, 4, 5}, {2, 1, 6, 3, 5, 4}, {2, 1, 6, 4, 3, 5}, {2, 1, 6, 4, 5, 3}, {2, 1, 6, 5, 3, 4}, {2, 1, 6, 5, 4, 3}, {2, 3, 1, 4, 5, 6}, {2, 3, 1, 4, 6, 5}, {2, 3, 1, 5, 4, 6}, {2, 3, 1, 5, 6, 4}, {2, 3, 1, 6, 4, 5}, {2, 3, 1, 6, 5, 4}, {2, 3, 4, 1, 5, 6}, {2, 3, 4, 1, 6, 5}, {2, 3, 4, 5, 1, 6}, {2, 3, 4, 5, 6, 1}, {2, 3, 4, 6, 1, 5}, {2, 3, 4, 6, 5, 1}, {2, 3, 5, 1, 4, 6}, {2, 3, 5, 1, 6, 4}, {2, 3, 5, 4, 1, 6}, {2, 3, 5, 4, 6, 1}, {2, 3, 5, 6, 1, 4}, {2, 3, 5, 6, 4, 1}, {2, 3, 6, 1, 4, 5}, {2, 3, 6, 1, 5, 4}, {2, 3, 6, 4, 1, 5}, {2, 3, 6, 4, 5, 1}, {2, 3, 6, 5, 1, 4}, {2, 3, 6, 5, 4, 1}, {2, 4, 1, 3, 5, 6}, {2, 4, 1, 3, 6, 5}, {2, 4, 1, 5, 3, 6}, {2, 4, 1, 5, 6, 3}, {2, 4, 1, 6, 3, 5}, {2, 4, 1, 6, 5, 3}, {2, 4, 3, 1, 5, 6}, {2, 4, 3, 1, 6, 5}, {2, 4, 3, 5, 1, 6}, {2, 4, 3, 5, 6, 1}, {2, 4, 3, 6, 1, 5}, {2, 4, 3, 6, 5, 1}, {2, 4, 5, 1, 3, 6}, {2, 4, 5, 1, 6, 3}, {2, 4, 5, 3, 1, 6}, {2, 4, 5, 3, 6, 1}, {2, 4, 5, 6, 1, 3}, {2, 4, 5, 6, 3, 1}, {2, 4, 6, 1, 3, 5}, {2, 4, 6, 1, 5, 3}, {2, 4, 6, 3, 1, 5}, {2, 4, 6, 3, 5, 1}, {2, 4, 6, 5, 1, 3}, {2, 4, 6, 5, 3, 1}, {2, 5, 1, 3, 4, 6}, {2, 5, 1, 3, 6, 4}, {2, 5, 1, 4, 3, 6}, {2, 5, 1, 4, 6, 3}, {2, 5, 1, 6, 3, 4}, {2, 5, 1, 6, 4, 3}, {2, 5, 3, 1, 4, 6}, {2, 5, 3, 1, 6, 4}, {2, 5, 3, 4, 1, 6}, {2, 5, 3, 4, 6, 1}, {2, 5, 3, 6, 1, 4}, {2, 5, 3, 6, 4, 1}, {2, 5, 4, 1, 3, 6}, {2, 5, 4, 1, 6, 3}, {2, 5, 4, 3, 1, 6}, {2, 5, 4, 3, 6, 1}, {2, 5, 4, 6, 1, 3}, {2, 5, 4, 6, 3, 1}, {2, 5, 6, 1, 3, 4}, {2, 5, 6, 1, 4, 3}, {2, 5, 6, 3, 1, 4}, {2, 5, 6, 3, 4, 1}, {2, 5, 6, 4, 1, 3}, {2, 5, 6, 4, 3, 1}, {2, 6, 1, 3, 4, 5}, {2, 6, 1, 3, 5, 4}, {2, 6, 1, 4, 3, 5}, {2, 6, 1, 4, 5, 3}, {2, 6, 1, 5, 3, 4}, {2, 6, 1, 5, 4, 3}, {2, 6, 3, 1, 4, 5}, {2, 6, 3, 1, 5, 4}, {2, 6, 3, 4, 1, 5}, {2, 6, 3, 4, 5, 1}, {2, 6, 3, 5, 1, 4}, {2, 6, 3, 5, 4, 1}, {2, 6, 4, 1, 3, 5}, {2, 6, 4, 1, 5, 3}, {2, 6, 4, 3, 1, 5}, {2, 6, 4, 3, 5, 1}, {2, 6, 4, 5, 1, 3}, {2, 6, 4, 5, 3, 1}, {2, 6, 5, 1, 3, 4}, {2, 6, 5, 1, 4, 3}, {2, 6, 5, 3, 1, 4}, {2, 6, 5, 3, 4, 1}, {2, 6, 5, 4, 1, 3}, {2, 6, 5, 4, 3, 1}, {3, 1, 2, 4, 5, 6}, {3, 1, 2, 4, 6, 5}, {3, 1, 2, 5, 4, 6}, {3, 1, 2, 5, 6, 4}, {3, 1, 2, 6, 4, 5}, {3, 1, 2, 6, 5, 4}, {3, 1, 4, 2, 5, 6}, {3, 1, 4, 2, 6, 5}, {3, 1, 4, 5, 2, 6}, {3, 1, 4, 5, 6, 2}, {3, 1, 4, 6, 2, 5}, {3, 1, 4, 6, 5, 2}, {3, 1, 5, 2, 4, 6}, {3, 1, 5, 2, 6, 4}, {3, 1, 5, 4, 2, 6}, {3, 1, 5, 4, 6, 2}, {3, 1, 5, 6, 2, 4}, {3, 1, 5, 6, 4, 2}, {3, 1, 6, 2, 4, 5}, {3, 1, 6, 2, 5, 4}, {3, 1, 6, 4, 2, 5}, {3, 1, 6, 4, 5, 2}, {3, 1, 6, 5, 2, 4}, {3, 1, 6, 5, 4, 2}, {3, 2, 1, 4, 5, 6}, {3, 2, 1, 4, 6, 5}, {3, 2, 1, 5, 4, 6}, {3, 2, 1, 5, 6, 4}, {3, 2, 1, 6, 4, 5}, {3, 2, 1, 6, 5, 4}, {3, 2, 4, 1, 5, 6}, {3, 2, 4, 1, 6, 5}, {3, 2, 4, 5, 1, 6}, {3, 2, 4, 5, 6, 1}, {3, 2, 4, 6, 1, 5}, {3, 2, 4, 6, 5, 1}, {3, 2, 5, 1, 4, 6}, {3, 2, 5, 1, 6, 4}, {3, 2, 5, 4, 1, 6}, {3, 2, 5, 4, 6, 1}, {3, 2, 5, 6, 1, 4}, {3, 2, 5, 6, 4, 1}, {3, 2, 6, 1, 4, 5}, {3, 2, 6, 1, 5, 4}, {3, 2, 6, 4, 1, 5}, {3, 2, 6, 4, 5, 1}, {3, 2, 6, 5, 1, 4}, {3, 2, 6, 5, 4, 1}, {3, 4, 1, 2, 5, 6}, {3, 4, 1, 2, 6, 5}, {3, 4, 1, 5, 2, 6}, {3, 4, 1, 5, 6, 2}, {3, 4, 1, 6, 2, 5}, {3, 4, 1, 6, 5, 2}, {3, 4, 2, 1, 5, 6}, {3, 4, 2, 1, 6, 5}, {3, 4, 2, 5, 1, 6}, {3, 4, 2, 5, 6, 1}, {3, 4, 2, 6, 1, 5}, {3, 4, 2, 6, 5, 1}, {3, 4, 5, 1, 2, 6}, {3, 4, 5, 1, 6, 2}, {3, 4, 5, 2, 1, 6}, {3, 4, 5, 2, 6, 1}, {3, 4, 5, 6, 1, 2}, {3, 4, 5, 6, 2, 1}, {3, 4, 6, 1, 2, 5}, {3, 4, 6, 1, 5, 2}, {3, 4, 6, 2, 1, 5}, {3, 4, 6, 2, 5, 1}, {3, 4, 6, 5, 1, 2}, {3, 4, 6, 5, 2, 1}, {3, 5, 1, 2, 4, 6}, {3, 5, 1, 2, 6, 4}, {3, 5, 1, 4, 2, 6}, {3, 5, 1, 4, 6, 2}, {3, 5, 1, 6, 2, 4}, {3, 5, 1, 6, 4, 2}, {3, 5, 2, 1, 4, 6}, {3, 5, 2, 1, 6, 4}, {3, 5, 2, 4, 1, 6}, {3, 5, 2, 4, 6, 1}, {3, 5, 2, 6, 1, 4}, {3, 5, 2, 6, 4, 1}, {3, 5, 4, 1, 2, 6}, {3, 5, 4, 1, 6, 2}, {3, 5, 4, 2, 1, 6}, {3, 5, 4, 2, 6, 1}, {3, 5, 4, 6, 1, 2}, {3, 5, 4, 6, 2, 1}, {3, 5, 6, 1, 2, 4}, {3, 5, 6, 1, 4, 2}, {3, 5, 6, 2, 1, 4}, {3, 5, 6, 2, 4, 1}, {3, 5, 6, 4, 1, 2}, {3, 5, 6, 4, 2, 1}, {3, 6, 1, 2, 4, 5}, {3, 6, 1, 2, 5, 4}, {3, 6, 1, 4, 2, 5}, {3, 6, 1, 4, 5, 2}, {3, 6, 1, 5, 2, 4}, {3, 6, 1, 5, 4, 2}, {3, 6, 2, 1, 4, 5}, {3, 6, 2, 1, 5, 4}, {3, 6, 2, 4, 1, 5}, {3, 6, 2, 4, 5, 1}, {3, 6, 2, 5, 1, 4}, {3, 6, 2, 5, 4, 1}, {3, 6, 4, 1, 2, 5}, {3, 6, 4, 1, 5, 2}, {3, 6, 4, 2, 1, 5}, {3, 6, 4, 2, 5, 1}, {3, 6, 4, 5, 1, 2}, {3, 6, 4, 5, 2, 1}, {3, 6, 5, 1, 2, 4}, {3, 6, 5, 1, 4, 2}, {3, 6, 5, 2, 1, 4}, {3, 6, 5, 2, 4, 1}, {3, 6, 5, 4, 1, 2}, {3, 6, 5, 4, 2, 1}, {4, 1, 2, 3, 5, 6}, {4, 1, 2, 3, 6, 5}, {4, 1, 2, 5, 3, 6}, {4, 1, 2, 5, 6, 3}, {4, 1, 2, 6, 3, 5}, {4, 1, 2, 6, 5, 3}, {4, 1, 3, 2, 5, 6}, {4, 1, 3, 2, 6, 5}, {4, 1, 3, 5, 2, 6}, {4, 1, 3, 5, 6, 2}, {4, 1, 3, 6, 2, 5}, {4, 1, 3, 6, 5, 2}, {4, 1, 5, 2, 3, 6}, {4, 1, 5, 2, 6, 3}, {4, 1, 5, 3, 2, 6}, {4, 1, 5, 3, 6, 2}, {4, 1, 5, 6, 2, 3}, {4, 1, 5, 6, 3, 2}, {4, 1, 6, 2, 3, 5}, {4, 1, 6, 2, 5, 3}, {4, 1, 6, 3, 2, 5}, {4, 1, 6, 3, 5, 2}, {4, 1, 6, 5, 2, 3}, {4, 1, 6, 5, 3, 2}, {4, 2, 1, 3, 5, 6}, {4, 2, 1, 3, 6, 5}, {4, 2, 1, 5, 3, 6}, {4, 2, 1, 5, 6, 3}, {4, 2, 1, 6, 3, 5}, {4, 2, 1, 6, 5, 3}, {4, 2, 3, 1, 5, 6}, {4, 2, 3, 1, 6, 5}, {4, 2, 3, 5, 1, 6}, {4, 2, 3, 5, 6, 1}, {4, 2, 3, 6, 1, 5}, {4, 2, 3, 6, 5, 1}, {4, 2, 5, 1, 3, 6}, {4, 2, 5, 1, 6, 3}, {4, 2, 5, 3, 1, 6}, {4, 2, 5, 3, 6, 1}, {4, 2, 5, 6, 1, 3}, {4, 2, 5, 6, 3, 1}, {4, 2, 6, 1, 3, 5}, {4, 2, 6, 1, 5, 3}, {4, 2, 6, 3, 1, 5}, {4, 2, 6, 3, 5, 1}, {4, 2, 6, 5, 1, 3}, {4, 2, 6, 5, 3, 1}, {4, 3, 1, 2, 5, 6}, {4, 3, 1, 2, 6, 5}, {4, 3, 1, 5, 2, 6}, {4, 3, 1, 5, 6, 2}, {4, 3, 1, 6, 2, 5}, {4, 3, 1, 6, 5, 2}, {4, 3, 2, 1, 5, 6}, {4, 3, 2, 1, 6, 5}, {4, 3, 2, 5, 1, 6}, {4, 3, 2, 5, 6, 1}, {4, 3, 2, 6, 1, 5}, {4, 3, 2, 6, 5, 1}, {4, 3, 5, 1, 2, 6}, {4, 3, 5, 1, 6, 2}, {4, 3, 5, 2, 1, 6}, {4, 3, 5, 2, 6, 1}, {4, 3, 5, 6, 1, 2}, {4, 3, 5, 6, 2, 1}, {4, 3, 6, 1, 2, 5}, {4, 3, 6, 1, 5, 2}, {4, 3, 6, 2, 1, 5}, {4, 3, 6, 2, 5, 1}, {4, 3, 6, 5, 1, 2}, {4, 3, 6, 5, 2, 1}, {4, 5, 1, 2, 3, 6}, {4, 5, 1, 2, 6, 3}, {4, 5, 1, 3, 2, 6}, {4, 5, 1, 3, 6, 2}, {4, 5, 1, 6, 2, 3}, {4, 5, 1, 6, 3, 2}, {4, 5, 2, 1, 3, 6}, {4, 5, 2, 1, 6, 3}, {4, 5, 2, 3, 1, 6}, {4, 5, 2, 3, 6, 1}, {4, 5, 2, 6, 1, 3}, {4, 5, 2, 6, 3, 1}, {4, 5, 3, 1, 2, 6}, {4, 5, 3, 1, 6, 2}, {4, 5, 3, 2, 1, 6}, {4, 5, 3, 2, 6, 1}, {4, 5, 3, 6, 1, 2}, {4, 5, 3, 6, 2, 1}, {4, 5, 6, 1, 2, 3}, {4, 5, 6, 1, 3, 2}, {4, 5, 6, 2, 1, 3}, {4, 5, 6, 2, 3, 1}, {4, 5, 6, 3, 1, 2}, {4, 5, 6, 3, 2, 1}, {4, 6, 1, 2, 3, 5}, {4, 6, 1, 2, 5, 3}, {4, 6, 1, 3, 2, 5}, {4, 6, 1, 3, 5, 2}, {4, 6, 1, 5, 2, 3}, {4, 6, 1, 5, 3, 2}, {4, 6, 2, 1, 3, 5}, {4, 6, 2, 1, 5, 3}, {4, 6, 2, 3, 1, 5}, {4, 6, 2, 3, 5, 1}, {4, 6, 2, 5, 1, 3}, {4, 6, 2, 5, 3, 1}, {4, 6, 3, 1, 2, 5}, {4, 6, 3, 1, 5, 2}, {4, 6, 3, 2, 1, 5}, {4, 6, 3, 2, 5, 1}, {4, 6, 3, 5, 1, 2}, {4, 6, 3, 5, 2, 1}, {4, 6, 5, 1, 2, 3}, {4, 6, 5, 1, 3, 2}, {4, 6, 5, 2, 1, 3}, {4, 6, 5, 2, 3, 1}, {4, 6, 5, 3, 1, 2}, {4, 6, 5, 3, 2, 1}, {5, 1, 2, 3, 4, 6}, {5, 1, 2, 3, 6, 4}, {5, 1, 2, 4, 3, 6}, {5, 1, 2, 4, 6, 3}, {5, 1, 2, 6, 3, 4}, {5, 1, 2, 6, 4, 3}, {5, 1, 3, 2, 4, 6}, {5, 1, 3, 2, 6, 4}, {5, 1, 3, 4, 2, 6}, {5, 1, 3, 4, 6, 2}, {5, 1, 3, 6, 2, 4}, {5, 1, 3, 6, 4, 2}, {5, 1, 4, 2, 3, 6}, {5, 1, 4, 2, 6, 3}, {5, 1, 4, 3, 2, 6}, {5, 1, 4, 3, 6, 2}, {5, 1, 4, 6, 2, 3}, {5, 1, 4, 6, 3, 2}, {5, 1, 6, 2, 3, 4}, {5, 1, 6, 2, 4, 3}, {5, 1, 6, 3, 2, 4}, {5, 1, 6, 3, 4, 2}, {5, 1, 6, 4, 2, 3}, {5, 1, 6, 4, 3, 2}, {5, 2, 1, 3, 4, 6}, {5, 2, 1, 3, 6, 4}, {5, 2, 1, 4, 3, 6}, {5, 2, 1, 4, 6, 3}, {5, 2, 1, 6, 3, 4}, {5, 2, 1, 6, 4, 3}, {5, 2, 3, 1, 4, 6}, {5, 2, 3, 1, 6, 4}, {5, 2, 3, 4, 1, 6}, {5, 2, 3, 4, 6, 1}, {5, 2, 3, 6, 1, 4}, {5, 2, 3, 6, 4, 1}, {5, 2, 4, 1, 3, 6}, {5, 2, 4, 1, 6, 3}, {5, 2, 4, 3, 1, 6}, {5, 2, 4, 3, 6, 1}, {5, 2, 4, 6, 1, 3}, {5, 2, 4, 6, 3, 1}, {5, 2, 6, 1, 3, 4}, {5, 2, 6, 1, 4, 3}, {5, 2, 6, 3, 1, 4}, {5, 2, 6, 3, 4, 1}, {5, 2, 6, 4, 1, 3}, {5, 2, 6, 4, 3, 1}, {5, 3, 1, 2, 4, 6}, {5, 3, 1, 2, 6, 4}, {5, 3, 1, 4, 2, 6}, {5, 3, 1, 4, 6, 2}, {5, 3, 1, 6, 2, 4}, {5, 3, 1, 6, 4, 2}, {5, 3, 2, 1, 4, 6}, {5, 3, 2, 1, 6, 4}, {5, 3, 2, 4, 1, 6}, {5, 3, 2, 4, 6, 1}, {5, 3, 2, 6, 1, 4}, {5, 3, 2, 6, 4, 1}, {5, 3, 4, 1, 2, 6}, {5, 3, 4, 1, 6, 2}, {5, 3, 4, 2, 1, 6}, {5, 3, 4, 2, 6, 1}, {5, 3, 4, 6, 1, 2}, {5, 3, 4, 6, 2, 1}, {5, 3, 6, 1, 2, 4}, {5, 3, 6, 1, 4, 2}, {5, 3, 6, 2, 1, 4}, {5, 3, 6, 2, 4, 1}, {5, 3, 6, 4, 1, 2}, {5, 3, 6, 4, 2, 1}, {5, 4, 1, 2, 3, 6}, {5, 4, 1, 2, 6, 3}, {5, 4, 1, 3, 2, 6}, {5, 4, 1, 3, 6, 2}, {5, 4, 1, 6, 2, 3}, {5, 4, 1, 6, 3, 2}, {5, 4, 2, 1, 3, 6}, {5, 4, 2, 1, 6, 3}, {5, 4, 2, 3, 1, 6}, {5, 4, 2, 3, 6, 1}, {5, 4, 2, 6, 1, 3}, {5, 4, 2, 6, 3, 1}, {5, 4, 3, 1, 2, 6}, {5, 4, 3, 1, 6, 2}, {5, 4, 3, 2, 1, 6}, {5, 4, 3, 2, 6, 1}, {5, 4, 3, 6, 1, 2}, {5, 4, 3, 6, 2, 1}, {5, 4, 6, 1, 2, 3}, {5, 4, 6, 1, 3, 2}, {5, 4, 6, 2, 1, 3}, {5, 4, 6, 2, 3, 1}, {5, 4, 6, 3, 1, 2}, {5, 4, 6, 3, 2, 1}, {5, 6, 1, 2, 3, 4}, {5, 6, 1, 2, 4, 3}, {5, 6, 1, 3, 2, 4}, {5, 6, 1, 3, 4, 2}, {5, 6, 1, 4, 2, 3}, {5, 6, 1, 4, 3, 2}, {5, 6, 2, 1, 3, 4}, {5, 6, 2, 1, 4, 3}, {5, 6, 2, 3, 1, 4}, {5, 6, 2, 3, 4, 1}, {5, 6, 2, 4, 1, 3}, {5, 6, 2, 4, 3, 1}, {5, 6, 3, 1, 2, 4}, {5, 6, 3, 1, 4, 2}, {5, 6, 3, 2, 1, 4}, {5, 6, 3, 2, 4, 1}, {5, 6, 3, 4, 1, 2}, {5, 6, 3, 4, 2, 1}, {5, 6, 4, 1, 2, 3}, {5, 6, 4, 1, 3, 2}, {5, 6, 4, 2, 1, 3}, {5, 6, 4, 2, 3, 1}, {5, 6, 4, 3, 1, 2}, {5, 6, 4, 3, 2, 1}, {6, 1, 2, 3, 4, 5}, {6, 1, 2, 3, 5, 4}, {6, 1, 2, 4, 3, 5}, {6, 1, 2, 4, 5, 3}, {6, 1, 2, 5, 3, 4}, {6, 1, 2, 5, 4, 3}, {6, 1, 3, 2, 4, 5}, {6, 1, 3, 2, 5, 4}, {6, 1, 3, 4, 2, 5}, {6, 1, 3, 4, 5, 2}, {6, 1, 3, 5, 2, 4}, {6, 1, 3, 5, 4, 2}, {6, 1, 4, 2, 3, 5}, {6, 1, 4, 2, 5, 3}, {6, 1, 4, 3, 2, 5}, {6, 1, 4, 3, 5, 2}, {6, 1, 4, 5, 2, 3}, {6, 1, 4, 5, 3, 2}, {6, 1, 5, 2, 3, 4}, {6, 1, 5, 2, 4, 3}, {6, 1, 5, 3, 2, 4}, {6, 1, 5, 3, 4, 2}, {6, 1, 5, 4, 2, 3}, {6, 1, 5, 4, 3, 2}, {6, 2, 1, 3, 4, 5}, {6, 2, 1, 3, 5, 4}, {6, 2, 1, 4, 3, 5}, {6, 2, 1, 4, 5, 3}, {6, 2, 1, 5, 3, 4}, {6, 2, 1, 5, 4, 3}, {6, 2, 3, 1, 4, 5}, {6, 2, 3, 1, 5, 4}, {6, 2, 3, 4, 1, 5}, {6, 2, 3, 4, 5, 1}, {6, 2, 3, 5, 1, 4}, {6, 2, 3, 5, 4, 1}, {6, 2, 4, 1, 3, 5}, {6, 2, 4, 1, 5, 3}, {6, 2, 4, 3, 1, 5}, {6, 2, 4, 3, 5, 1}, {6, 2, 4, 5, 1, 3}, {6, 2, 4, 5, 3, 1}, {6, 2, 5, 1, 3, 4}, {6, 2, 5, 1, 4, 3}, {6, 2, 5, 3, 1, 4}, {6, 2, 5, 3, 4, 1}, {6, 2, 5, 4, 1, 3}, {6, 2, 5, 4, 3, 1}, {6, 3, 1, 2, 4, 5}, {6, 3, 1, 2, 5, 4}, {6, 3, 1, 4, 2, 5}, {6, 3, 1, 4, 5, 2}, {6, 3, 1, 5, 2, 4}, {6, 3, 1, 5, 4, 2}, {6, 3, 2, 1, 4, 5}, {6, 3, 2, 1, 5, 4}, {6, 3, 2, 4, 1, 5}, {6, 3, 2, 4, 5, 1}, {6, 3, 2, 5, 1, 4}, {6, 3, 2, 5, 4, 1}, {6, 3, 4, 1, 2, 5}, {6, 3, 4, 1, 5, 2}, {6, 3, 4, 2, 1, 5}, {6, 3, 4, 2, 5, 1}, {6, 3, 4, 5, 1, 2}, {6, 3, 4, 5, 2, 1}, {6, 3, 5, 1, 2, 4}, {6, 3, 5, 1, 4, 2}, {6, 3, 5, 2, 1, 4}, {6, 3, 5, 2, 4, 1}, {6, 3, 5, 4, 1, 2}, {6, 3, 5, 4, 2, 1}, {6, 4, 1, 2, 3, 5}, {6, 4, 1, 2, 5, 3}, {6, 4, 1, 3, 2, 5}, {6, 4, 1, 3, 5, 2}, {6, 4, 1, 5, 2, 3}, {6, 4, 1, 5, 3, 2}, {6, 4, 2, 1, 3, 5}, {6, 4, 2, 1, 5, 3}, {6, 4, 2, 3, 1, 5}, {6, 4, 2, 3, 5, 1}, {6, 4, 2, 5, 1, 3}, {6, 4, 2, 5, 3, 1}, {6, 4, 3, 1, 2, 5}, {6, 4, 3, 1, 5, 2}, {6, 4, 3, 2, 1, 5}, {6, 4, 3, 2, 5, 1}, {6, 4, 3, 5, 1, 2}, {6, 4, 3, 5, 2, 1}, {6, 4, 5, 1, 2, 3}, {6, 4, 5, 1, 3, 2}, {6, 4, 5, 2, 1, 3}, {6, 4, 5, 2, 3, 1}, {6, 4, 5, 3, 1, 2}, {6, 4, 5, 3, 2, 1}, {6, 5, 1, 2, 3, 4}, {6, 5, 1, 2, 4, 3}, {6, 5, 1, 3, 2, 4}, {6, 5, 1, 3, 4, 2}, {6, 5, 1, 4, 2, 3}, {6, 5, 1, 4, 3, 2}, {6, 5, 2, 1, 3, 4}, {6, 5, 2, 1, 4, 3}, {6, 5, 2, 3, 1, 4}, {6, 5, 2, 3, 4, 1}, {6, 5, 2, 4, 1, 3}, {6, 5, 2, 4, 3, 1}, {6, 5, 3, 1, 2, 4}, {6, 5, 3, 1, 4, 2}, {6, 5, 3, 2, 1, 4}, {6, 5, 3, 2, 4, 1}, {6, 5, 3, 4, 1, 2}, {6, 5, 3, 4, 2, 1}, {6, 5, 4, 1, 2, 3}, {6, 5, 4, 1, 3, 2}, {6, 5, 4, 2, 1, 3}, {6, 5, 4, 2, 3, 1}, {6, 5, 4, 3, 1, 2}, {6, 5, 4, 3, 2, 1}}

Note: This is a lazy person's solution !!! If I made a mistake, count them from the top !!!!! 

 

Feb 3, 2018

3 Online Users

avatar
avatar
avatar