Processing math: 100%
 
  Questions   
Sort: 
 #4
avatar+130474 
+2

5.)

What is the probability that a randomly selected three-digit number has the property that one digit is equal to the product of the other two? Express your answer as a common fraction.

 

To make                            Possible products                  #  of Numbers

0                               2nd, 3rd digits 0..1st digit 1 - 9        9

1                                           11                                        1

2                                           21                                        3

3                                           31                                        3

4                                           14 , 22                                 6                               

5                                           15                                        3

6                                           16   23                                 9                               

7                                            71                                       3

8                                            81   42                                9

9                                            91   33                                6

 

Prob  =   52 / 900    =   13 / 225

 

 

cool cool cool                        

Feb 4, 2018
 #7
avatar+2446 
+3

Well, trial and error appeared to be my friend here. If I was not aware that the original expression could be simplified further, I probably would have made the same conclusion as you did, Melody. It is considered improper to have radicals or fractional exponents in the denominator, so I knew that there was some way to simplify this. My method is really only relevant to this particular problem. You will see why. 

 

Now, let's consider that extra bit on the end, the 913=(32)13=323=3(13)2. This means that the denominator can be written like 1+313+3(13)2, and if I let x=313, then I can represent the denominator like x2+x+1. I then made a stunning realization. This required some extraordinary observational skills. 

 

x3y3=(xy)(x2+xy+y2) I am sure that you are familiar with this. It's the factorization of a difference of cubes. Let's set y equal to 1 and substitute.
x31=(x1)(x2+x+1) Wait a second! Look at what one of the factors is. It's x2+x+1, which is also the expression of the denominator. This tells me that  if I multiply the trinomial in the denominator by x-1, then I will be left with two terms. This is perfect! I have now found a way to manipulate the denominator into two terms. Let's keep going. Since x=313, let's just substitute it in. 
3(13)31=(3131)(3(13)2+313+1) Let's complete the simplification here. The process is quite straightforward when you are comfortable with the law of indices. 
3(13)3131331311312 Of course, notice what I multiplied the denominator by in the original problem. It is 3131.
   

 

So, no, the conjugate is not "magical." The only issue with this thought process is that this will not help you on most types of problems with multi-term denominators. This is just one particular case, and I happened to crack it. 

Feb 3, 2018
 #1
avatar
+1

OK, Young Person!! Ready, GO!!.

 

{{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 6, 5}, {1, 2, 3, 5, 4, 6}, {1, 2, 3, 5, 6, 4}, {1, 2, 3, 6, 4, 5}, {1, 2, 3, 6, 5, 4}, {1, 2, 4, 3, 5, 6}, {1, 2, 4, 3, 6, 5}, {1, 2, 4, 5, 3, 6}, {1, 2, 4, 5, 6, 3}, {1, 2, 4, 6, 3, 5}, {1, 2, 4, 6, 5, 3}, {1, 2, 5, 3, 4, 6}, {1, 2, 5, 3, 6, 4}, {1, 2, 5, 4, 3, 6}, {1, 2, 5, 4, 6, 3}, {1, 2, 5, 6, 3, 4}, {1, 2, 5, 6, 4, 3}, {1, 2, 6, 3, 4, 5}, {1, 2, 6, 3, 5, 4}, {1, 2, 6, 4, 3, 5}, {1, 2, 6, 4, 5, 3}, {1, 2, 6, 5, 3, 4}, {1, 2, 6, 5, 4, 3}, {1, 3, 2, 4, 5, 6}, {1, 3, 2, 4, 6, 5}, {1, 3, 2, 5, 4, 6}, {1, 3, 2, 5, 6, 4}, {1, 3, 2, 6, 4, 5}, {1, 3, 2, 6, 5, 4}, {1, 3, 4, 2, 5, 6}, {1, 3, 4, 2, 6, 5}, {1, 3, 4, 5, 2, 6}, {1, 3, 4, 5, 6, 2}, {1, 3, 4, 6, 2, 5}, {1, 3, 4, 6, 5, 2}, {1, 3, 5, 2, 4, 6}, {1, 3, 5, 2, 6, 4}, {1, 3, 5, 4, 2, 6}, {1, 3, 5, 4, 6, 2}, {1, 3, 5, 6, 2, 4}, {1, 3, 5, 6, 4, 2}, {1, 3, 6, 2, 4, 5}, {1, 3, 6, 2, 5, 4}, {1, 3, 6, 4, 2, 5}, {1, 3, 6, 4, 5, 2}, {1, 3, 6, 5, 2, 4}, {1, 3, 6, 5, 4, 2}, {1, 4, 2, 3, 5, 6}, {1, 4, 2, 3, 6, 5}, {1, 4, 2, 5, 3, 6}, {1, 4, 2, 5, 6, 3}, {1, 4, 2, 6, 3, 5}, {1, 4, 2, 6, 5, 3}, {1, 4, 3, 2, 5, 6}, {1, 4, 3, 2, 6, 5}, {1, 4, 3, 5, 2, 6}, {1, 4, 3, 5, 6, 2}, {1, 4, 3, 6, 2, 5}, {1, 4, 3, 6, 5, 2}, {1, 4, 5, 2, 3, 6}, {1, 4, 5, 2, 6, 3}, {1, 4, 5, 3, 2, 6}, {1, 4, 5, 3, 6, 2}, {1, 4, 5, 6, 2, 3}, {1, 4, 5, 6, 3, 2}, {1, 4, 6, 2, 3, 5}, {1, 4, 6, 2, 5, 3}, {1, 4, 6, 3, 2, 5}, {1, 4, 6, 3, 5, 2}, {1, 4, 6, 5, 2, 3}, {1, 4, 6, 5, 3, 2}, {1, 5, 2, 3, 4, 6}, {1, 5, 2, 3, 6, 4}, {1, 5, 2, 4, 3, 6}, {1, 5, 2, 4, 6, 3}, {1, 5, 2, 6, 3, 4}, {1, 5, 2, 6, 4, 3}, {1, 5, 3, 2, 4, 6}, {1, 5, 3, 2, 6, 4}, {1, 5, 3, 4, 2, 6}, {1, 5, 3, 4, 6, 2}, {1, 5, 3, 6, 2, 4}, {1, 5, 3, 6, 4, 2}, {1, 5, 4, 2, 3, 6}, {1, 5, 4, 2, 6, 3}, {1, 5, 4, 3, 2, 6}, {1, 5, 4, 3, 6, 2}, {1, 5, 4, 6, 2, 3}, {1, 5, 4, 6, 3, 2}, {1, 5, 6, 2, 3, 4}, {1, 5, 6, 2, 4, 3}, {1, 5, 6, 3, 2, 4}, {1, 5, 6, 3, 4, 2}, {1, 5, 6, 4, 2, 3}, {1, 5, 6, 4, 3, 2}, {1, 6, 2, 3, 4, 5}, {1, 6, 2, 3, 5, 4}, {1, 6, 2, 4, 3, 5}, {1, 6, 2, 4, 5, 3}, {1, 6, 2, 5, 3, 4}, {1, 6, 2, 5, 4, 3}, {1, 6, 3, 2, 4, 5}, {1, 6, 3, 2, 5, 4}, {1, 6, 3, 4, 2, 5}, {1, 6, 3, 4, 5, 2}, {1, 6, 3, 5, 2, 4}, {1, 6, 3, 5, 4, 2}, {1, 6, 4, 2, 3, 5}, {1, 6, 4, 2, 5, 3}, {1, 6, 4, 3, 2, 5}, {1, 6, 4, 3, 5, 2}, {1, 6, 4, 5, 2, 3}, {1, 6, 4, 5, 3, 2}, {1, 6, 5, 2, 3, 4}, {1, 6, 5, 2, 4, 3}, {1, 6, 5, 3, 2, 4}, {1, 6, 5, 3, 4, 2}, {1, 6, 5, 4, 2, 3}, {1, 6, 5, 4, 3, 2}, {2, 1, 3, 4, 5, 6}, {2, 1, 3, 4, 6, 5}, {2, 1, 3, 5, 4, 6}, {2, 1, 3, 5, 6, 4}, {2, 1, 3, 6, 4, 5}, {2, 1, 3, 6, 5, 4}, {2, 1, 4, 3, 5, 6}, {2, 1, 4, 3, 6, 5}, {2, 1, 4, 5, 3, 6}, {2, 1, 4, 5, 6, 3}, {2, 1, 4, 6, 3, 5}, {2, 1, 4, 6, 5, 3}, {2, 1, 5, 3, 4, 6}, {2, 1, 5, 3, 6, 4}, {2, 1, 5, 4, 3, 6}, {2, 1, 5, 4, 6, 3}, {2, 1, 5, 6, 3, 4}, {2, 1, 5, 6, 4, 3}, {2, 1, 6, 3, 4, 5}, {2, 1, 6, 3, 5, 4}, {2, 1, 6, 4, 3, 5}, {2, 1, 6, 4, 5, 3}, {2, 1, 6, 5, 3, 4}, {2, 1, 6, 5, 4, 3}, {2, 3, 1, 4, 5, 6}, {2, 3, 1, 4, 6, 5}, {2, 3, 1, 5, 4, 6}, {2, 3, 1, 5, 6, 4}, {2, 3, 1, 6, 4, 5}, {2, 3, 1, 6, 5, 4}, {2, 3, 4, 1, 5, 6}, {2, 3, 4, 1, 6, 5}, {2, 3, 4, 5, 1, 6}, {2, 3, 4, 5, 6, 1}, {2, 3, 4, 6, 1, 5}, {2, 3, 4, 6, 5, 1}, {2, 3, 5, 1, 4, 6}, {2, 3, 5, 1, 6, 4}, {2, 3, 5, 4, 1, 6}, {2, 3, 5, 4, 6, 1}, {2, 3, 5, 6, 1, 4}, {2, 3, 5, 6, 4, 1}, {2, 3, 6, 1, 4, 5}, {2, 3, 6, 1, 5, 4}, {2, 3, 6, 4, 1, 5}, {2, 3, 6, 4, 5, 1}, {2, 3, 6, 5, 1, 4}, {2, 3, 6, 5, 4, 1}, {2, 4, 1, 3, 5, 6}, {2, 4, 1, 3, 6, 5}, {2, 4, 1, 5, 3, 6}, {2, 4, 1, 5, 6, 3}, {2, 4, 1, 6, 3, 5}, {2, 4, 1, 6, 5, 3}, {2, 4, 3, 1, 5, 6}, {2, 4, 3, 1, 6, 5}, {2, 4, 3, 5, 1, 6}, {2, 4, 3, 5, 6, 1}, {2, 4, 3, 6, 1, 5}, {2, 4, 3, 6, 5, 1}, {2, 4, 5, 1, 3, 6}, {2, 4, 5, 1, 6, 3}, {2, 4, 5, 3, 1, 6}, {2, 4, 5, 3, 6, 1}, {2, 4, 5, 6, 1, 3}, {2, 4, 5, 6, 3, 1}, {2, 4, 6, 1, 3, 5}, {2, 4, 6, 1, 5, 3}, {2, 4, 6, 3, 1, 5}, {2, 4, 6, 3, 5, 1}, {2, 4, 6, 5, 1, 3}, {2, 4, 6, 5, 3, 1}, {2, 5, 1, 3, 4, 6}, {2, 5, 1, 3, 6, 4}, {2, 5, 1, 4, 3, 6}, {2, 5, 1, 4, 6, 3}, {2, 5, 1, 6, 3, 4}, {2, 5, 1, 6, 4, 3}, {2, 5, 3, 1, 4, 6}, {2, 5, 3, 1, 6, 4}, {2, 5, 3, 4, 1, 6}, {2, 5, 3, 4, 6, 1}, {2, 5, 3, 6, 1, 4}, {2, 5, 3, 6, 4, 1}, {2, 5, 4, 1, 3, 6}, {2, 5, 4, 1, 6, 3}, {2, 5, 4, 3, 1, 6}, {2, 5, 4, 3, 6, 1}, {2, 5, 4, 6, 1, 3}, {2, 5, 4, 6, 3, 1}, {2, 5, 6, 1, 3, 4}, {2, 5, 6, 1, 4, 3}, {2, 5, 6, 3, 1, 4}, {2, 5, 6, 3, 4, 1}, {2, 5, 6, 4, 1, 3}, {2, 5, 6, 4, 3, 1}, {2, 6, 1, 3, 4, 5}, {2, 6, 1, 3, 5, 4}, {2, 6, 1, 4, 3, 5}, {2, 6, 1, 4, 5, 3}, {2, 6, 1, 5, 3, 4}, {2, 6, 1, 5, 4, 3}, {2, 6, 3, 1, 4, 5}, {2, 6, 3, 1, 5, 4}, {2, 6, 3, 4, 1, 5}, {2, 6, 3, 4, 5, 1}, {2, 6, 3, 5, 1, 4}, {2, 6, 3, 5, 4, 1}, {2, 6, 4, 1, 3, 5}, {2, 6, 4, 1, 5, 3}, {2, 6, 4, 3, 1, 5}, {2, 6, 4, 3, 5, 1}, {2, 6, 4, 5, 1, 3}, {2, 6, 4, 5, 3, 1}, {2, 6, 5, 1, 3, 4}, {2, 6, 5, 1, 4, 3}, {2, 6, 5, 3, 1, 4}, {2, 6, 5, 3, 4, 1}, {2, 6, 5, 4, 1, 3}, {2, 6, 5, 4, 3, 1}, {3, 1, 2, 4, 5, 6}, {3, 1, 2, 4, 6, 5}, {3, 1, 2, 5, 4, 6}, {3, 1, 2, 5, 6, 4}, {3, 1, 2, 6, 4, 5}, {3, 1, 2, 6, 5, 4}, {3, 1, 4, 2, 5, 6}, {3, 1, 4, 2, 6, 5}, {3, 1, 4, 5, 2, 6}, {3, 1, 4, 5, 6, 2}, {3, 1, 4, 6, 2, 5}, {3, 1, 4, 6, 5, 2}, {3, 1, 5, 2, 4, 6}, {3, 1, 5, 2, 6, 4}, {3, 1, 5, 4, 2, 6}, {3, 1, 5, 4, 6, 2}, {3, 1, 5, 6, 2, 4}, {3, 1, 5, 6, 4, 2}, {3, 1, 6, 2, 4, 5}, {3, 1, 6, 2, 5, 4}, {3, 1, 6, 4, 2, 5}, {3, 1, 6, 4, 5, 2}, {3, 1, 6, 5, 2, 4}, {3, 1, 6, 5, 4, 2}, {3, 2, 1, 4, 5, 6}, {3, 2, 1, 4, 6, 5}, {3, 2, 1, 5, 4, 6}, {3, 2, 1, 5, 6, 4}, {3, 2, 1, 6, 4, 5}, {3, 2, 1, 6, 5, 4}, {3, 2, 4, 1, 5, 6}, {3, 2, 4, 1, 6, 5}, {3, 2, 4, 5, 1, 6}, {3, 2, 4, 5, 6, 1}, {3, 2, 4, 6, 1, 5}, {3, 2, 4, 6, 5, 1}, {3, 2, 5, 1, 4, 6}, {3, 2, 5, 1, 6, 4}, {3, 2, 5, 4, 1, 6}, {3, 2, 5, 4, 6, 1}, {3, 2, 5, 6, 1, 4}, {3, 2, 5, 6, 4, 1}, {3, 2, 6, 1, 4, 5}, {3, 2, 6, 1, 5, 4}, {3, 2, 6, 4, 1, 5}, {3, 2, 6, 4, 5, 1}, {3, 2, 6, 5, 1, 4}, {3, 2, 6, 5, 4, 1}, {3, 4, 1, 2, 5, 6}, {3, 4, 1, 2, 6, 5}, {3, 4, 1, 5, 2, 6}, {3, 4, 1, 5, 6, 2}, {3, 4, 1, 6, 2, 5}, {3, 4, 1, 6, 5, 2}, {3, 4, 2, 1, 5, 6}, {3, 4, 2, 1, 6, 5}, {3, 4, 2, 5, 1, 6}, {3, 4, 2, 5, 6, 1}, {3, 4, 2, 6, 1, 5}, {3, 4, 2, 6, 5, 1}, {3, 4, 5, 1, 2, 6}, {3, 4, 5, 1, 6, 2}, {3, 4, 5, 2, 1, 6}, {3, 4, 5, 2, 6, 1}, {3, 4, 5, 6, 1, 2}, {3, 4, 5, 6, 2, 1}, {3, 4, 6, 1, 2, 5}, {3, 4, 6, 1, 5, 2}, {3, 4, 6, 2, 1, 5}, {3, 4, 6, 2, 5, 1}, {3, 4, 6, 5, 1, 2}, {3, 4, 6, 5, 2, 1}, {3, 5, 1, 2, 4, 6}, {3, 5, 1, 2, 6, 4}, {3, 5, 1, 4, 2, 6}, {3, 5, 1, 4, 6, 2}, {3, 5, 1, 6, 2, 4}, {3, 5, 1, 6, 4, 2}, {3, 5, 2, 1, 4, 6}, {3, 5, 2, 1, 6, 4}, {3, 5, 2, 4, 1, 6}, {3, 5, 2, 4, 6, 1}, {3, 5, 2, 6, 1, 4}, {3, 5, 2, 6, 4, 1}, {3, 5, 4, 1, 2, 6}, {3, 5, 4, 1, 6, 2}, {3, 5, 4, 2, 1, 6}, {3, 5, 4, 2, 6, 1}, {3, 5, 4, 6, 1, 2}, {3, 5, 4, 6, 2, 1}, {3, 5, 6, 1, 2, 4}, {3, 5, 6, 1, 4, 2}, {3, 5, 6, 2, 1, 4}, {3, 5, 6, 2, 4, 1}, {3, 5, 6, 4, 1, 2}, {3, 5, 6, 4, 2, 1}, {3, 6, 1, 2, 4, 5}, {3, 6, 1, 2, 5, 4}, {3, 6, 1, 4, 2, 5}, {3, 6, 1, 4, 5, 2}, {3, 6, 1, 5, 2, 4}, {3, 6, 1, 5, 4, 2}, {3, 6, 2, 1, 4, 5}, {3, 6, 2, 1, 5, 4}, {3, 6, 2, 4, 1, 5}, {3, 6, 2, 4, 5, 1}, {3, 6, 2, 5, 1, 4}, {3, 6, 2, 5, 4, 1}, {3, 6, 4, 1, 2, 5}, {3, 6, 4, 1, 5, 2}, {3, 6, 4, 2, 1, 5}, {3, 6, 4, 2, 5, 1}, {3, 6, 4, 5, 1, 2}, {3, 6, 4, 5, 2, 1}, {3, 6, 5, 1, 2, 4}, {3, 6, 5, 1, 4, 2}, {3, 6, 5, 2, 1, 4}, {3, 6, 5, 2, 4, 1}, {3, 6, 5, 4, 1, 2}, {3, 6, 5, 4, 2, 1}, {4, 1, 2, 3, 5, 6}, {4, 1, 2, 3, 6, 5}, {4, 1, 2, 5, 3, 6}, {4, 1, 2, 5, 6, 3}, {4, 1, 2, 6, 3, 5}, {4, 1, 2, 6, 5, 3}, {4, 1, 3, 2, 5, 6}, {4, 1, 3, 2, 6, 5}, {4, 1, 3, 5, 2, 6}, {4, 1, 3, 5, 6, 2}, {4, 1, 3, 6, 2, 5}, {4, 1, 3, 6, 5, 2}, {4, 1, 5, 2, 3, 6}, {4, 1, 5, 2, 6, 3}, {4, 1, 5, 3, 2, 6}, {4, 1, 5, 3, 6, 2}, {4, 1, 5, 6, 2, 3}, {4, 1, 5, 6, 3, 2}, {4, 1, 6, 2, 3, 5}, {4, 1, 6, 2, 5, 3}, {4, 1, 6, 3, 2, 5}, {4, 1, 6, 3, 5, 2}, {4, 1, 6, 5, 2, 3}, {4, 1, 6, 5, 3, 2}, {4, 2, 1, 3, 5, 6}, {4, 2, 1, 3, 6, 5}, {4, 2, 1, 5, 3, 6}, {4, 2, 1, 5, 6, 3}, {4, 2, 1, 6, 3, 5}, {4, 2, 1, 6, 5, 3}, {4, 2, 3, 1, 5, 6}, {4, 2, 3, 1, 6, 5}, {4, 2, 3, 5, 1, 6}, {4, 2, 3, 5, 6, 1}, {4, 2, 3, 6, 1, 5}, {4, 2, 3, 6, 5, 1}, {4, 2, 5, 1, 3, 6}, {4, 2, 5, 1, 6, 3}, {4, 2, 5, 3, 1, 6}, {4, 2, 5, 3, 6, 1}, {4, 2, 5, 6, 1, 3}, {4, 2, 5, 6, 3, 1}, {4, 2, 6, 1, 3, 5}, {4, 2, 6, 1, 5, 3}, {4, 2, 6, 3, 1, 5}, {4, 2, 6, 3, 5, 1}, {4, 2, 6, 5, 1, 3}, {4, 2, 6, 5, 3, 1}, {4, 3, 1, 2, 5, 6}, {4, 3, 1, 2, 6, 5}, {4, 3, 1, 5, 2, 6}, {4, 3, 1, 5, 6, 2}, {4, 3, 1, 6, 2, 5}, {4, 3, 1, 6, 5, 2}, {4, 3, 2, 1, 5, 6}, {4, 3, 2, 1, 6, 5}, {4, 3, 2, 5, 1, 6}, {4, 3, 2, 5, 6, 1}, {4, 3, 2, 6, 1, 5}, {4, 3, 2, 6, 5, 1}, {4, 3, 5, 1, 2, 6}, {4, 3, 5, 1, 6, 2}, {4, 3, 5, 2, 1, 6}, {4, 3, 5, 2, 6, 1}, {4, 3, 5, 6, 1, 2}, {4, 3, 5, 6, 2, 1}, {4, 3, 6, 1, 2, 5}, {4, 3, 6, 1, 5, 2}, {4, 3, 6, 2, 1, 5}, {4, 3, 6, 2, 5, 1}, {4, 3, 6, 5, 1, 2}, {4, 3, 6, 5, 2, 1}, {4, 5, 1, 2, 3, 6}, {4, 5, 1, 2, 6, 3}, {4, 5, 1, 3, 2, 6}, {4, 5, 1, 3, 6, 2}, {4, 5, 1, 6, 2, 3}, {4, 5, 1, 6, 3, 2}, {4, 5, 2, 1, 3, 6}, {4, 5, 2, 1, 6, 3}, {4, 5, 2, 3, 1, 6}, {4, 5, 2, 3, 6, 1}, {4, 5, 2, 6, 1, 3}, {4, 5, 2, 6, 3, 1}, {4, 5, 3, 1, 2, 6}, {4, 5, 3, 1, 6, 2}, {4, 5, 3, 2, 1, 6}, {4, 5, 3, 2, 6, 1}, {4, 5, 3, 6, 1, 2}, {4, 5, 3, 6, 2, 1}, {4, 5, 6, 1, 2, 3}, {4, 5, 6, 1, 3, 2}, {4, 5, 6, 2, 1, 3}, {4, 5, 6, 2, 3, 1}, {4, 5, 6, 3, 1, 2}, {4, 5, 6, 3, 2, 1}, {4, 6, 1, 2, 3, 5}, {4, 6, 1, 2, 5, 3}, {4, 6, 1, 3, 2, 5}, {4, 6, 1, 3, 5, 2}, {4, 6, 1, 5, 2, 3}, {4, 6, 1, 5, 3, 2}, {4, 6, 2, 1, 3, 5}, {4, 6, 2, 1, 5, 3}, {4, 6, 2, 3, 1, 5}, {4, 6, 2, 3, 5, 1}, {4, 6, 2, 5, 1, 3}, {4, 6, 2, 5, 3, 1}, {4, 6, 3, 1, 2, 5}, {4, 6, 3, 1, 5, 2}, {4, 6, 3, 2, 1, 5}, {4, 6, 3, 2, 5, 1}, {4, 6, 3, 5, 1, 2}, {4, 6, 3, 5, 2, 1}, {4, 6, 5, 1, 2, 3}, {4, 6, 5, 1, 3, 2}, {4, 6, 5, 2, 1, 3}, {4, 6, 5, 2, 3, 1}, {4, 6, 5, 3, 1, 2}, {4, 6, 5, 3, 2, 1}, {5, 1, 2, 3, 4, 6}, {5, 1, 2, 3, 6, 4}, {5, 1, 2, 4, 3, 6}, {5, 1, 2, 4, 6, 3}, {5, 1, 2, 6, 3, 4}, {5, 1, 2, 6, 4, 3}, {5, 1, 3, 2, 4, 6}, {5, 1, 3, 2, 6, 4}, {5, 1, 3, 4, 2, 6}, {5, 1, 3, 4, 6, 2}, {5, 1, 3, 6, 2, 4}, {5, 1, 3, 6, 4, 2}, {5, 1, 4, 2, 3, 6}, {5, 1, 4, 2, 6, 3}, {5, 1, 4, 3, 2, 6}, {5, 1, 4, 3, 6, 2}, {5, 1, 4, 6, 2, 3}, {5, 1, 4, 6, 3, 2}, {5, 1, 6, 2, 3, 4}, {5, 1, 6, 2, 4, 3}, {5, 1, 6, 3, 2, 4}, {5, 1, 6, 3, 4, 2}, {5, 1, 6, 4, 2, 3}, {5, 1, 6, 4, 3, 2}, {5, 2, 1, 3, 4, 6}, {5, 2, 1, 3, 6, 4}, {5, 2, 1, 4, 3, 6}, {5, 2, 1, 4, 6, 3}, {5, 2, 1, 6, 3, 4}, {5, 2, 1, 6, 4, 3}, {5, 2, 3, 1, 4, 6}, {5, 2, 3, 1, 6, 4}, {5, 2, 3, 4, 1, 6}, {5, 2, 3, 4, 6, 1}, {5, 2, 3, 6, 1, 4}, {5, 2, 3, 6, 4, 1}, {5, 2, 4, 1, 3, 6}, {5, 2, 4, 1, 6, 3}, {5, 2, 4, 3, 1, 6}, {5, 2, 4, 3, 6, 1}, {5, 2, 4, 6, 1, 3}, {5, 2, 4, 6, 3, 1}, {5, 2, 6, 1, 3, 4}, {5, 2, 6, 1, 4, 3}, {5, 2, 6, 3, 1, 4}, {5, 2, 6, 3, 4, 1}, {5, 2, 6, 4, 1, 3}, {5, 2, 6, 4, 3, 1}, {5, 3, 1, 2, 4, 6}, {5, 3, 1, 2, 6, 4}, {5, 3, 1, 4, 2, 6}, {5, 3, 1, 4, 6, 2}, {5, 3, 1, 6, 2, 4}, {5, 3, 1, 6, 4, 2}, {5, 3, 2, 1, 4, 6}, {5, 3, 2, 1, 6, 4}, {5, 3, 2, 4, 1, 6}, {5, 3, 2, 4, 6, 1}, {5, 3, 2, 6, 1, 4}, {5, 3, 2, 6, 4, 1}, {5, 3, 4, 1, 2, 6}, {5, 3, 4, 1, 6, 2}, {5, 3, 4, 2, 1, 6}, {5, 3, 4, 2, 6, 1}, {5, 3, 4, 6, 1, 2}, {5, 3, 4, 6, 2, 1}, {5, 3, 6, 1, 2, 4}, {5, 3, 6, 1, 4, 2}, {5, 3, 6, 2, 1, 4}, {5, 3, 6, 2, 4, 1}, {5, 3, 6, 4, 1, 2}, {5, 3, 6, 4, 2, 1}, {5, 4, 1, 2, 3, 6}, {5, 4, 1, 2, 6, 3}, {5, 4, 1, 3, 2, 6}, {5, 4, 1, 3, 6, 2}, {5, 4, 1, 6, 2, 3}, {5, 4, 1, 6, 3, 2}, {5, 4, 2, 1, 3, 6}, {5, 4, 2, 1, 6, 3}, {5, 4, 2, 3, 1, 6}, {5, 4, 2, 3, 6, 1}, {5, 4, 2, 6, 1, 3}, {5, 4, 2, 6, 3, 1}, {5, 4, 3, 1, 2, 6}, {5, 4, 3, 1, 6, 2}, {5, 4, 3, 2, 1, 6}, {5, 4, 3, 2, 6, 1}, {5, 4, 3, 6, 1, 2}, {5, 4, 3, 6, 2, 1}, {5, 4, 6, 1, 2, 3}, {5, 4, 6, 1, 3, 2}, {5, 4, 6, 2, 1, 3}, {5, 4, 6, 2, 3, 1}, {5, 4, 6, 3, 1, 2}, {5, 4, 6, 3, 2, 1}, {5, 6, 1, 2, 3, 4}, {5, 6, 1, 2, 4, 3}, {5, 6, 1, 3, 2, 4}, {5, 6, 1, 3, 4, 2}, {5, 6, 1, 4, 2, 3}, {5, 6, 1, 4, 3, 2}, {5, 6, 2, 1, 3, 4}, {5, 6, 2, 1, 4, 3}, {5, 6, 2, 3, 1, 4}, {5, 6, 2, 3, 4, 1}, {5, 6, 2, 4, 1, 3}, {5, 6, 2, 4, 3, 1}, {5, 6, 3, 1, 2, 4}, {5, 6, 3, 1, 4, 2}, {5, 6, 3, 2, 1, 4}, {5, 6, 3, 2, 4, 1}, {5, 6, 3, 4, 1, 2}, {5, 6, 3, 4, 2, 1}, {5, 6, 4, 1, 2, 3}, {5, 6, 4, 1, 3, 2}, {5, 6, 4, 2, 1, 3}, {5, 6, 4, 2, 3, 1}, {5, 6, 4, 3, 1, 2}, {5, 6, 4, 3, 2, 1}, {6, 1, 2, 3, 4, 5}, {6, 1, 2, 3, 5, 4}, {6, 1, 2, 4, 3, 5}, {6, 1, 2, 4, 5, 3}, {6, 1, 2, 5, 3, 4}, {6, 1, 2, 5, 4, 3}, {6, 1, 3, 2, 4, 5}, {6, 1, 3, 2, 5, 4}, {6, 1, 3, 4, 2, 5}, {6, 1, 3, 4, 5, 2}, {6, 1, 3, 5, 2, 4}, {6, 1, 3, 5, 4, 2}, {6, 1, 4, 2, 3, 5}, {6, 1, 4, 2, 5, 3}, {6, 1, 4, 3, 2, 5}, {6, 1, 4, 3, 5, 2}, {6, 1, 4, 5, 2, 3}, {6, 1, 4, 5, 3, 2}, {6, 1, 5, 2, 3, 4}, {6, 1, 5, 2, 4, 3}, {6, 1, 5, 3, 2, 4}, {6, 1, 5, 3, 4, 2}, {6, 1, 5, 4, 2, 3}, {6, 1, 5, 4, 3, 2}, {6, 2, 1, 3, 4, 5}, {6, 2, 1, 3, 5, 4}, {6, 2, 1, 4, 3, 5}, {6, 2, 1, 4, 5, 3}, {6, 2, 1, 5, 3, 4}, {6, 2, 1, 5, 4, 3}, {6, 2, 3, 1, 4, 5}, {6, 2, 3, 1, 5, 4}, {6, 2, 3, 4, 1, 5}, {6, 2, 3, 4, 5, 1}, {6, 2, 3, 5, 1, 4}, {6, 2, 3, 5, 4, 1}, {6, 2, 4, 1, 3, 5}, {6, 2, 4, 1, 5, 3}, {6, 2, 4, 3, 1, 5}, {6, 2, 4, 3, 5, 1}, {6, 2, 4, 5, 1, 3}, {6, 2, 4, 5, 3, 1}, {6, 2, 5, 1, 3, 4}, {6, 2, 5, 1, 4, 3}, {6, 2, 5, 3, 1, 4}, {6, 2, 5, 3, 4, 1}, {6, 2, 5, 4, 1, 3}, {6, 2, 5, 4, 3, 1}, {6, 3, 1, 2, 4, 5}, {6, 3, 1, 2, 5, 4}, {6, 3, 1, 4, 2, 5}, {6, 3, 1, 4, 5, 2}, {6, 3, 1, 5, 2, 4}, {6, 3, 1, 5, 4, 2}, {6, 3, 2, 1, 4, 5}, {6, 3, 2, 1, 5, 4}, {6, 3, 2, 4, 1, 5}, {6, 3, 2, 4, 5, 1}, {6, 3, 2, 5, 1, 4}, {6, 3, 2, 5, 4, 1}, {6, 3, 4, 1, 2, 5}, {6, 3, 4, 1, 5, 2}, {6, 3, 4, 2, 1, 5}, {6, 3, 4, 2, 5, 1}, {6, 3, 4, 5, 1, 2}, {6, 3, 4, 5, 2, 1}, {6, 3, 5, 1, 2, 4}, {6, 3, 5, 1, 4, 2}, {6, 3, 5, 2, 1, 4}, {6, 3, 5, 2, 4, 1}, {6, 3, 5, 4, 1, 2}, {6, 3, 5, 4, 2, 1}, {6, 4, 1, 2, 3, 5}, {6, 4, 1, 2, 5, 3}, {6, 4, 1, 3, 2, 5}, {6, 4, 1, 3, 5, 2}, {6, 4, 1, 5, 2, 3}, {6, 4, 1, 5, 3, 2}, {6, 4, 2, 1, 3, 5}, {6, 4, 2, 1, 5, 3}, {6, 4, 2, 3, 1, 5}, {6, 4, 2, 3, 5, 1}, {6, 4, 2, 5, 1, 3}, {6, 4, 2, 5, 3, 1}, {6, 4, 3, 1, 2, 5}, {6, 4, 3, 1, 5, 2}, {6, 4, 3, 2, 1, 5}, {6, 4, 3, 2, 5, 1}, {6, 4, 3, 5, 1, 2}, {6, 4, 3, 5, 2, 1}, {6, 4, 5, 1, 2, 3}, {6, 4, 5, 1, 3, 2}, {6, 4, 5, 2, 1, 3}, {6, 4, 5, 2, 3, 1}, {6, 4, 5, 3, 1, 2}, {6, 4, 5, 3, 2, 1}, {6, 5, 1, 2, 3, 4}, {6, 5, 1, 2, 4, 3}, {6, 5, 1, 3, 2, 4}, {6, 5, 1, 3, 4, 2}, {6, 5, 1, 4, 2, 3}, {6, 5, 1, 4, 3, 2}, {6, 5, 2, 1, 3, 4}, {6, 5, 2, 1, 4, 3}, {6, 5, 2, 3, 1, 4}, {6, 5, 2, 3, 4, 1}, {6, 5, 2, 4, 1, 3}, {6, 5, 2, 4, 3, 1}, {6, 5, 3, 1, 2, 4}, {6, 5, 3, 1, 4, 2}, {6, 5, 3, 2, 1, 4}, {6, 5, 3, 2, 4, 1}, {6, 5, 3, 4, 1, 2}, {6, 5, 3, 4, 2, 1}, {6, 5, 4, 1, 2, 3}, {6, 5, 4, 1, 3, 2}, {6, 5, 4, 2, 1, 3}, {6, 5, 4, 2, 3, 1}, {6, 5, 4, 3, 1, 2}, {6, 5, 4, 3, 2, 1}}

Note: This is a lazy person's solution !!! If I made a mistake, count them from the top !!!!! 

 

Feb 3, 2018

3 Online Users

avatar