Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
Feb 6, 2018
 #2
avatar+118703 
0
Feb 6, 2018
 #3
avatar+37165 
0
Feb 6, 2018
 #6
avatar+2234 
+3

Solve this by setting up a system of modular equations.

 

n0(mod8)n1(mod9)n2(mod10)Set m=8910=720

 

The first product zero— included as a formality.

 Eurler totients calculated from non-prime numbers.

 

 

n=0910[(910)φ(8)1(mod8)]=modulo inverse (910)mod8=(910)41mod8=(910)3mod8=(90(mod8))3mod8=(2)3mod8=0+1810[(810)φ(9)1(mod9)]=modulo inverse (810)mod9=(810)61mod9=(810)5mod9=(80(mod9))5mod9=(8)5mod9=8+289[(89)φ(10)1(mod10)]=modulo inverse (89)mod10=(89)41mod10=(89)3mod10=(72(mod10))3mod10=(2)3mod10=8n=0910[0]+1810[8]+289[8]n=0+640+1152n=1792n(modm)=1792(mod720)=352nmin=352

.
Feb 6, 2018

1 Online Users