Questions   
Sort: 
 #9
avatar+26396 
+2
Feb 7, 2018
 #8
avatar+118690 
+2
Feb 7, 2018
 #7
avatar+26396 
+2

When the minute hand of a clock points exactly at a full minute, the hour hand is exactly two minutes away.

Give all possible times in a 12-hour period that satisfy condition.

 

\(\text{ angular velocity minute hand: $ \omega_m^{\circ} =\dfrac{360^{\circ}}{1~ h} $ }\\ \text{ angular velocity hour hand: $ \omega_h^{\circ} =\dfrac{360^{\circ}}{12~ h} $ }\\ \boxed{\text{angle = angular velocity }\times \text{ time}}\\ \text{ angle minute hand: $ \alpha_m^{\circ} = \omega_m^{\circ} \times t^h \qquad t^h$ time in hours } \\ \text{ angle hour hand: $ \alpha_h^{\circ} = \omega_h^{\circ} \times t^h \qquad t^h$ time in hours } \\ \text{ angle difference minute hand-hour hand: $ \alpha_m^{\circ}-\alpha_h^{\circ} = \Delta\alpha^{\circ}$ } \\ \Delta\alpha^{\circ} = \alpha_m^{\circ}-\alpha_h^{\circ} \\ \Delta\alpha^{\circ} = \omega_m^{\circ} \times t^h - \omega_h^{\circ} \times t^h \\ \Delta\alpha^{\circ} = \left(\omega_m^{\circ} - \omega_h^{\circ} \right) \times t^h \\ \Delta\alpha^{\circ} = \left(\dfrac{360^{\circ}}{1~ h} - \dfrac{360^{\circ}}{12~ h} \right) \times t^h \\ \Delta\alpha^{\circ} = \left(360\cdot \dfrac{11}{12} \right) \times t^h \\ \Delta\alpha^{\circ} = 330 \times t^h \pmod{360^{\circ}} \\\)

 

\(\mathbf{\boxed{\Delta\alpha^{\circ} = 330 \times t^h \pmod{360^{\circ}} }}\)

 

Example:

\(t^h = 6\ h \\ \Delta\alpha^{\circ} = 330 \times 6 \pmod{360^{\circ}} \\ \Delta\alpha^{\circ} = 1980^{\circ} \pmod{ 360^{\circ} } \\ \Delta\alpha^{\circ} = 1980^{\circ} - 5\cdot 360^{\circ} \\ \Delta\alpha^{\circ} = 180^{\circ} \)

 

1.

\(\text{The hour hand of a clock points exactly at a full minute:} \\ \begin{array}{rcll} \dfrac{360^{\circ}}{60~\min.} &=& \dfrac{x}{1~\min.} \\\\ x&=&\dfrac{1~ \min.}{60~ \min.}\cdot 360^{\circ} \\\\ \mathbf{x}&\mathbf{=}&\mathbf{6^{\circ}} \\ \end{array} \)

 

1 minute on the clock conforms 6 degrees.

 

\(\text{The hour hand of a clock points exactly at a full minute, so} \\ \text{ $\alpha_h^{\circ} = 6^{\circ} \cdot n \qquad | \qquad n$ is an integer} \)

 

2. \(\mathbf{t^h =\ ?}\)

\(\begin{array}{rcll} \alpha_h^{\circ} &=& \omega_h^{\circ} \times t^h \\\\ t^h &=& \dfrac{ \alpha_h^{\circ} } {\omega_h^{\circ}} \quad & | \quad \alpha_h^{\circ} = 6^{\circ} \cdot n \qquad \omega_h^{\circ} = \dfrac{360^{\circ}}{12~ h} \\\\ t^h &=& \dfrac{ 6^{\circ} \cdot n } { \dfrac{360^{\circ}}{12~ h}} \\\\ \mathbf{t^h} &\mathbf{=}& \mathbf{0.2n} \\ \end{array}\)

 

3.

\(\text{The hour hand is exactly two minutes away: $\Delta\alpha^{\circ} = \pm 12^{\circ}$ } \\ \begin{array}{rcll} \Delta\alpha^{\circ} &=& 330 \times t^h \pmod{360^{\circ}} \quad & | \quad \mathbf{t^h=0.2n} \qquad \Delta\alpha^{\circ} = \pm 12^{\circ} \\ \pm 12^{\circ} &=& 330 \times 0.2n \pmod{360^{\circ}} \\ \pm 12^{\circ} &=& 66n \pmod{360^{\circ}} \\ \pm 12^{\circ} -66n &=& 360^{\circ}m \qquad & n \in N,\ m \in N \\ \pm 12^{\circ} &=& 66n + 360^{\circ}m \quad & | \quad : 6 \\ \pm 2^{\circ} &=& 11n + 60^{\circ}m \\ &&\boxed{1. \text{ Diophantine equation: } 11n + 60^{\circ}m = 2} \\ &&\boxed{2. \text{ Diophantine equation: } 11n + 60^{\circ}m = -2} \\ \end{array} \)

 

4. Solution diophantine equation 11n + 60m = 2:

\(\text{The variable with the smallest coefficient is $n$. The equation is transformed after $n$: }\\ \begin{array}{rcll} 11n + 60m &=& 2 \\ \mathbf{n} &\mathbf{=}& \mathbf{\dfrac{ 2 - 60m } {11}} \\ &=& \dfrac{ 2 - 55m - 5m } {11} \\ &=& \dfrac{ - 55m + 2 - 5m } {11} \\ &=& -\dfrac{55m}{11} + \dfrac{ 2 - 5m } {11} \\ n &=&-5m+ \dfrac{ 2 - 5m } {11} \\ \end{array}\\ \begin{array}{lrcll} \text{we set:} &a &=& \dfrac{ 2 - 5m } {11} \\ & 11a &=& 2 - 5m \\ \end{array} \\ \text{The variable with the smallest coefficient is $m$. The equation is transformed after $m$: }\\ \begin{array}{rcll} 5m &=& 2 - 11a \\ \mathbf{m} &\mathbf{=}& \mathbf{\dfrac{ 2 - 11a } {5}} \\ &=& \dfrac{ 2 - 10a-a } {5} \\ &=& \dfrac{ - 10a + 2 -a } {5} \\ &=& -\dfrac{10a}{5} + \dfrac{ 2 -a } {5} \\ m &=& -2a+ \dfrac{ 2 - a } {5} \\ \end{array}\\ \begin{array}{lrcll} \text{we set:} & b &=& \dfrac{ 2 - a } {5} \\ & 5b &=& 2 - a \\ \end{array}\\ \text{The variable with the smallest coefficient is $a$. The equation is transformed after $a$: }\\ \begin{array}{lrcll} \text{no fraction there:} & \mathbf{a} &\mathbf{=}& \mathbf{ 2 - 5b } \\ \end{array} \)

 

\(\text{Elemination of the unknowns:}\\ \begin{array}{rcll} \mathbf{m} &\mathbf{=}& \mathbf{\dfrac{ 2 - 11a } {5}} \quad & | \quad \mathbf{a = 2 - 5b }\\ & = & \dfrac{ 2 - 11 (2 - 5b) } {5} \\ \mathbf{m} & \mathbf{=} & \mathbf{-4 + 11b} \\\\ \mathbf{n} &\mathbf{=}& \mathbf{\dfrac{ 2 - 60m } {11}} \quad & | \quad \mathbf{m = -4 + 11b }\\ & = & \dfrac{ 2 - 60(-4 + 11b) } {11} \\ \mathbf{n} & \mathbf{=} & \mathbf{22 - 60b } \\ \end{array} \)

 

\(\boxed{ \text{1. Diophantine equation: }\\ \mathbf{n = 22 - 60b} \\\mathbf{m=-4 + 11b} \qquad b \in Z } \)\(\begin{array}{|lrcll|} \hline b = 0: & n &=& 22 \\ & t^h &=& 0.2n \\ & t^h &=& 0.2\cdot 22 \\ & &=& 4.4\quad (4:24) \\ \hline \end{array}\)

 

5. Solution diophantine equation 11n + 60m = -2:

\(\text{The variable with the smallest coefficient is $n$. The equation is transformed after $n$: }\\ \begin{array}{rcll} 11n + 60m &=& -2 \\ \mathbf{n} &\mathbf{=}& \mathbf{\dfrac{ -2 - 60m } {11}} \\ &=& \dfrac{ -2 - 55m - 5m } {11} \\ &=& \dfrac{ - 55m - 2 - 5m } {11} \\ &=& -\dfrac{55m}{11} + \dfrac{ -2 - 5m } {11} \\ n &=&-5m+ \dfrac{ -2 - 5m } {11} \\ \end{array}\\ \begin{array}{lrcll} \text{we set:} &a &=& \dfrac{ -2 - 5m } {11} \\ & 11a &=& -2 - 5m \\ \end{array} \\ \text{The variable with the smallest coefficient is $m$. The equation is transformed after $m$: }\\ \begin{array}{rcll} 5m &=& -2 - 11a \\ \mathbf{m} &\mathbf{=}& \mathbf{\dfrac{ -2 - 11a } {5}} \\ &=& \dfrac{ -2 - 10a-a } {5} \\ &=& \dfrac{ - 10a - 2 -a } {5} \\ &=& -\dfrac{10a}{5} + \dfrac{ -2 -a } {5} \\ m &=& -2a+ \dfrac{ -2 - a } {5} \\ \end{array}\\ \begin{array}{lrcll} \text{we set:} & b &=& \dfrac{ -2 - a } {5} \\ & 5b &=& -2 - a \\ \end{array}\\ \text{The variable with the smallest coefficient is $a$. The equation is transformed after $a$: }\\ \begin{array}{lrcll} \text{no fraction there:} & \mathbf{a} &\mathbf{=}& \mathbf{ -2 - 5b } \\ \end{array}\)

 

\(\text{Elemination of the unknowns:}\\ \begin{array}{rcll} \mathbf{m} &\mathbf{=}& \mathbf{\dfrac{ -2 - 11a } {5}} \quad & | \quad \mathbf{a = -2 - 5b }\\ & = & \dfrac{ -2 - 11 (-2 - 5b) } {5} \\ \mathbf{m} & \mathbf{=} & \mathbf{4 + 11b} \\\\ \mathbf{n} &\mathbf{=}& \mathbf{\dfrac{ 2 - 60m } {11}} \quad & | \quad \mathbf{m = 4 + 11b }\\ & = & \dfrac{ -2 - 60(4 + 11b) } {11} \\ \mathbf{n} & \mathbf{=} & \mathbf{-22 - 60b } \\ \end{array}\)

 

\(\boxed{ \text{2. Diophantine equation: }\\ \mathbf{n = -22 - 60b} \\\mathbf{m=4 + 11b} \qquad b \in Z } \)\(\begin{array}{|lrcll|} \hline b = -1: & n &=& -22+60 \\ & &=& 38 \\ & t^h &=& 0.2n \\ & t^h &=& 0.2\cdot 38 \\ & &=& 7.6\quad (7:36) \\ \hline \end{array} \)

 

 

The solutions are: 4:24 and 7:36

 

laugh

Feb 7, 2018
 #6
avatar+118690 
+2
Feb 7, 2018
 #9
avatar+2539 
0

My criticism isn’t because of his intuition. It’s because of his lack of an explanation or the  fluff and blarney he uses in its stead.  His explanation of reasoning does not extend to similar problems nor does it really explain the solution method for this exact problem.

 

All mathamations develop evolving intuition in solving problems. This usually develops as the students learn the algorithms and rote formulas for solutions. For most, mathematics starts with “Ours is not to know the reason why, it’s to invert the divisor and multiply.”

 

While Mr. BB appears to have an intuition to solve this and other related modulo problems, his explanations never convey any substance for reason, nor foundation for a rote formula that is useful to anyone.

 

A case in point. You have a degree in mathematics and decades of practiced skill. You have a level intuition that far exceeds the vast majority of college students and most graduates. Yet, Mr. BB’s explanation didn’t trigger much, if any, understanding for the nature of the problem or its solution. If this doesn’t float any part of your banana boat, then no one has a prayer to the banana goddess of hope for any understanding.   

 

Though his comments may be true, they are only true by tautology. They are not very useful for this particular problem, and they are useless for any related problem.  No one learns anything from Mr. BB’s Blarney, except how to become a Blarney Master.  He is one too. . . . One of the best I’ve seen.indecision

 

 

 

GA

Feb 7, 2018

4 Online Users

avatar
avatar
avatar
avatar