Questions   
Sort: 
 #2
avatar+2 
0

Just wanted to let you know that writing service also can manage problem solving type of work just as multiple choice questions.

Mar 12, 2018
 #1
avatar+26387 
+4

A customer ordered 15 pieces of gourmet chocolate.
The order can be packaged in small boxes that contain 1, 2 or 4 pieces of chocolate.
Any box that is used must be full.
How many different combinations of boxes can be used for the customer's 15 chocolate pieces?
One such combination to be included is to use seven 2-piece boxes and one 1-piece box.


\( \small{\text{In $15$ pieces max. $\color{red}3$ ($\color{green}4$-piece boxes), max. $\color{red}7$ ($\color{green}2$-piece boxes), and max. $\color{red}15$ ($\color{green}1$-piece boxes) }} \\\\ \)

\(\small{ \begin{array}{|rcll|} \hline && \displaystyle \left(\sum\limits_{i=0}^{\color{red}3} x^{({\color{green}{4}}*i)} \right) \times \left(\sum\limits_{i=0}^{\color{red}7} x^{({\color{green}{2}}*i)} \right) \times \left(\sum\limits_{i=0}^{\color{red}15} x^{({\color{green}{1}}*i)} \right) \\\\ &=&(1+x^4+x^8+x^{12}) \times (1+x^2+x^4+x^6+x^8+x^{10}+x^{12}+x^{14}) \times \\ && \times (1+x^1+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15} ) \\\\ &=& x^{41} + x^{40} + 2 x^{39} + 2 x^{38} + 4 x^{37} + 4 x^{36} + 6 x^{35} + 6 x^{34} + 9 x^{33} + 9 x^{32} + 12 x^{31} + 12 x^{30} \\ &+& 16 x^{29} + 16 x^{28} + 20 x^{27} + 20 x^{26} + 22 x^{25} + 22 x^{24} + 24 x^{23} + 24 x^{22} + 24 x^{21} \\ &+& 24 x^{20} + 24 x^{19} + 24 x^{18} + 22 x^{17} + 22 x^{16} + {\color{red}20 x^{15}} + 20 x^{14} + 16 x^{13} + 16 x^{12} \\ &+& 12 x^{11} + 12 x^{10} + 9 x^9 + 9 x^8 + 6 x^7 + 6 x^6 + 4 x^5 + 4 x^4 + 2 x^3 + 2 x^2 + x + 1 \\ \hline \end{array} } \)

 

\(\text{The coefficient from $\small{ \color[rgb]{1,0,0}{x^{15}} } $ is $\small{ \color[rgb]{1,0,0}{ 20 } } $. } \\ \text{So there are $\mathbf{20}$ possibilities.} \)

 

\(\begin{array}{|r|r|r|r|} \hline & \color{green}{1}\text{-piece boxes} & \color{green}{2}\text{-piece boxes} & \color{green}{4}\text{-piece boxes} \\ \hline 1 & 15 & & \\ \hline 2 & 13 & 1 & \\ \hline 3 & 11 & 2 & \\ \hline 4 & 11 & & 1 \\ \hline 5 & 9 & 1 & 1 \\ \hline 6 & 9 & 3 & \\ \hline 7 & 7 & & 2 \\ \hline 8 & 7 & 2 & 1 \\ \hline 9 & 7 & 4 & \\ \hline 10 & 5 & 1 & 2 \\ \hline 11 & 5 & 3 & 1 \\ \hline 12 & 5 & 5 & \\ \hline 13 & 3 & & 3 \\ \hline 14 & 3 & 2 & 2 \\ \hline 15 & 3 & 4 & 1 \\ \hline 16 & 3 & 6 & \\ \hline 17 & 1 & 1 & 3 \\ \hline 18 & 1 & 3 & 2 \\ \hline 19 & 1 & 5 & 1 \\ \hline 20 & 1 & 7 & \\ \hline \end{array}\)

 

laugh

Mar 12, 2018
 #1
avatar+129847 
+1

Let two vertexes of the square lie on  (a,0) and (0, b)

Where a < 8    and b < 6

 

Let side BC be the hypotenuse of the right triangle

And the equation of BC is:

y  =  -(6/8)(x - 8)

8y = -6x + 48

6x + 8y - 48 = 0

 

Now....using the formula for the distance between a point and a line we have two outcomes

 

Distance between (a,0)  and the line  =

 

abs [6(a) + 8(0) - 48 ]           abs[    6a  -  48]          abs[ 3a  - 24]

_________________      =    ____________      =   _________

     10                                        10                                    5

 

Distance between (0,b) and the line =

 

 abs[6(0) + 8(b -48) ]         abs[  8b - 48]              abs [ 4b - 24]

 ________________      =  ___________    =      ___________

     10                                       10                                5

 

And these distances are equal

 

Since a < 8  and b < 6 we can write

 

(24 - 3a) / 5  = (24 - 4b) / 5

24 - 3a  = 24 - 4b

-3a  = - 4b

3a = 4b  ⇒  b = (3/4) a

 

And the distance between the two points = the distance from one of the points to the hypotenuse 

 

Thus...

 

√[a^2 + b^2]  =  abs (3a - 24 )/ 5

 

Since  a < 8,  and the left side must be > 0...we can write...

 

√[a^2 + b^2]  =   (24 - 3a ) / 5

√ [a^2 + (9/16)a^2 ]  =  (24 - 3a) / 5

√ [ 25a^2] / 4  =  (24 - 3a)/5

5a/4  =  (24 - 3a) / 5

25a/4 = 24 - 3a

25a  = 96 - 12a

37a = 96

a = 96/37     

b =  (3/4 a)   = (3/4)(96/37) =   72/37

 

So.....the length of the side of the square  =

 

√[(96/37)^2 + (72/37)  ^2]  =

 

√[96^2 + 72^2] / 37   =  √14400 /  37    =   120 / 37 cm 

 

Here's a pic.... D  = "a"  = (96/37, 0)   and  E = "b"  = (0, 72/37)

 

 

 

cool cool cool

Mar 12, 2018
 #1
avatar+1245 
+1
Mar 12, 2018
 #1
avatar+1245 
+1
Mar 12, 2018

2 Online Users

avatar
avatar