Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #2
avatar+2 
0

Just wanted to let you know that writing service also can manage problem solving type of work just as multiple choice questions.

Mar 12, 2018
 #1
avatar+26396 
+4

A customer ordered 15 pieces of gourmet chocolate.
The order can be packaged in small boxes that contain 1, 2 or 4 pieces of chocolate.
Any box that is used must be full.
How many different combinations of boxes can be used for the customer's 15 chocolate pieces?
One such combination to be included is to use seven 2-piece boxes and one 1-piece box.


In 15 pieces max. 3 (4-piece boxes), max. 7 (2-piece boxes), and max. 15 (1-piece boxes) 

(3i=0x(4i))×(7i=0x(2i))×(15i=0x(1i))=(1+x4+x8+x12)×(1+x2+x4+x6+x8+x10+x12+x14)××(1+x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15)=x41+x40+2x39+2x38+4x37+4x36+6x35+6x34+9x33+9x32+12x31+12x30+16x29+16x28+20x27+20x26+22x25+22x24+24x23+24x22+24x21+24x20+24x19+24x18+22x17+22x16+20x15+20x14+16x13+16x12+12x11+12x10+9x9+9x8+6x7+6x6+4x5+4x4+2x3+2x2+x+1

 

The coefficient from x15 is 20So there are 20 possibilities.

 

1-piece boxes2-piece boxes4-piece boxes11521313112411159116937728721974105121153112551333143221534116361711318132191512017

 

laugh

Mar 12, 2018
 #1
avatar+130466 
+1

Let two vertexes of the square lie on  (a,0) and (0, b)

Where a < 8    and b < 6

 

Let side BC be the hypotenuse of the right triangle

And the equation of BC is:

y  =  -(6/8)(x - 8)

8y = -6x + 48

6x + 8y - 48 = 0

 

Now....using the formula for the distance between a point and a line we have two outcomes

 

Distance between (a,0)  and the line  =

 

abs [6(a) + 8(0) - 48 ]           abs[    6a  -  48]          abs[ 3a  - 24]

_________________      =    ____________      =   _________

     10                                        10                                    5

 

Distance between (0,b) and the line =

 

 abs[6(0) + 8(b -48) ]         abs[  8b - 48]              abs [ 4b - 24]

 ________________      =  ___________    =      ___________

     10                                       10                                5

 

And these distances are equal

 

Since a < 8  and b < 6 we can write

 

(24 - 3a) / 5  = (24 - 4b) / 5

24 - 3a  = 24 - 4b

-3a  = - 4b

3a = 4b  ⇒  b = (3/4) a

 

And the distance between the two points = the distance from one of the points to the hypotenuse 

 

Thus...

 

√[a^2 + b^2]  =  abs (3a - 24 )/ 5

 

Since  a < 8,  and the left side must be > 0...we can write...

 

√[a^2 + b^2]  =   (24 - 3a ) / 5

√ [a^2 + (9/16)a^2 ]  =  (24 - 3a) / 5

√ [ 25a^2] / 4  =  (24 - 3a)/5

5a/4  =  (24 - 3a) / 5

25a/4 = 24 - 3a

25a  = 96 - 12a

37a = 96

a = 96/37     

b =  (3/4 a)   = (3/4)(96/37) =   72/37

 

So.....the length of the side of the square  =

 

√[(96/37)^2 + (72/37)  ^2]  =

 

√[96^2 + 72^2] / 37   =  √14400 /  37    =   120 / 37 cm 

 

Here's a pic.... D  = "a"  = (96/37, 0)   and  E = "b"  = (0, 72/37)

 

 

 

cool cool cool

Mar 12, 2018
 #1
avatar+1245 
+1
Mar 12, 2018
 #1
avatar+1245 
+1
Mar 12, 2018

1 Online Users