Questions   
Sort: 
 #1
avatar+26400 
+3

Let A, B, and C be three points on the curve xy = 1 (which is a hyperbola).
Prove that the orthocenter of triangle ABC also lies on the curve xy = 1.

 

\(\text{Let $A= (x_A,y_A) = (x_A, \frac{1}{x_A} ) $ } \\ \text{Let $B= (x_B,y_B) = (x_B, \frac{1}{x_B} ) $ } \\ \text{Let $C= (x_C,y_C) = (x_C, \frac{1}{x_C} ) $ } \)

 

1.

\(\displaystyle \text{The slope of $\overline{AB}$ is $\frac{y_B-y_A}{x_B-x_A} = \frac{ \frac{1}{x_B} -\frac{1}{x_A} }{ x_B-x_A } = \frac{x_A-x_B}{x_Ax_B(x_B-x_A)} = -\frac{1}{x_Ax_B} $} \\ \displaystyle \text{ So, the slope of the altitude, which is perpendicular to $\overline{AB}$ is $-\frac{1}{-\frac{1}{x_Ax_B}} = x_Ax_B $}\)

 

\(\displaystyle \text{The equation of the altitude from C to $\overline{AB}$ is:}\)

\(\begin{array}{|rcll|} \hline y-y_C &=& m(x-x_C) \quad & | \quad m = x_Ax_B \\ y &=& y_C + x_Ax_B(x-x_C) \\ \mathbf{y} & \mathbf{=} & \mathbf{\dfrac{1}{x_C}+ x_Ax_B(x-x_C)} \\ \hline \end{array}\)

 

2.

\(\displaystyle \text{The slope of $\overline{BC}$ is $\frac{y_C-y_B}{x_C-x_B} = \frac{ \frac{1}{x_C} -\frac{1}{x_B} }{ x_C-x_B } = \frac{x_B-x_C}{x_Bx_C(x_C-x_B)} = -\frac{1}{x_Bx_C} $} \\ \displaystyle \text{ So, the slope of the altitude, which is perpendicular to $\overline{BC}$ is $-\frac{1}{-\frac{1}{x_Bx_C}} = x_Bx_C $}\)

 

\(\displaystyle \text{The equation of the altitude from A to $\overline{BC}$ is:}\)

\(\begin{array}{|rcll|} \hline y-y_A &=& m(x-x_A) \quad & | \quad m = x_Bx_C \\ y &=& y_A + x_Bx_C(x-x_A) \\ \mathbf{y} & \mathbf{=} & \mathbf{\dfrac{1}{x_A}+ x_Bx_C(x-x_A)} \\ \hline \end{array}\)

 

Solve the equations to find the intersection point of the altitudes:

 

3. \(x_{\text{orthocenter}} = \ ?\)

\(\begin{array}{|rcll|} \hline \dfrac{1}{x_C}+ x_Ax_B(x-x_C) &=& \dfrac{1}{x_A}+ x_Bx_C(x-x_A) \\ \dfrac{1}{x_C}+ x_Ax_Bx-x_Ax_Bx_C &=& \dfrac{1}{x_A}+ x_Bx_Cx-x_Bx_Cx_A \\ \dfrac{1}{x_C}+ x_Ax_Bx &=& \dfrac{1}{x_A}+ x_Bx_Cx \\ x_Ax_Bx-x_Bx_Cx &=& \dfrac{1}{x_A}-\dfrac{1}{x_C} \\ x_Bx(x_A-x_C) &=& \dfrac{x_C-x_A}{x_Ax_C} \\ x_Bx(x_A-x_C) &=& -\dfrac{x_A-x_C}{x_Ax_C} \\ x_Bx &=& -\dfrac{1}{x_Ax_C} \\ \mathbf{x_{\text{orthocenter}}} & \mathbf{=} & \mathbf{ -\dfrac{1}{x_Ax_Bx_C} } \\ \hline \end{array}\)

 

4. \(y_{\text{orthocenter}} = \ ?\)

\(\begin{array}{|rcll|} \hline y_{\text{orthocenter}} &=& \dfrac{1}{x_C}+ x_Ax_B(x_{\text{orthocenter}}-x_C) \\ &=& \dfrac{1}{x_C}+ x_Ax_B(-\dfrac{1}{x_Ax_Bx_C}-x_C) \\ &=& \dfrac{1}{x_C}- \dfrac{x_Ax_B}{x_Ax_Bx_C}-x_Ax_Bx_C \\ &=& \dfrac{1}{x_C}- \dfrac{1}{ x_C}-x_Ax_Bx_C \\ \mathbf{y_{\text{orthocenter}}} & \mathbf{=} & \mathbf{ -x_Ax_Bx_C } \\ \hline \end{array}\)

 

\(\text{The orthocenter of triangle ABC lies on the curve $xy = 1$, if $x_{\text{orthocenter}}\cdot y_{\text{orthocenter}} = 1$ } \)

\(\begin{array}{|rcll|} \hline x_{\text{orthocenter}}\cdot y_{\text{orthocenter}} &=& -\dfrac{1}{x_Ax_Bx_C} \cdot (-x_Ax_Bx_C) \\ &=& \dfrac{x_Ax_Bx_C}{x_Ax_Bx_C} \\ &=& 1\checkmark \\ \hline \end{array}\)

 

laugh

Jun 8, 2018
 #1
avatar+26400 
+1

When working modulo m, the notation a^-1 is used to denote the residue b for which ab\equiv 1\pmod{m}, if any exists.
For how many integers a satisfying  0 \le a < 100 is it true that
a(a-1)^{-1} \equiv 4a^{-1} \pmod{20}?

 

 

\(\begin{array}{|rcll|} \hline a(a-1)^{-1} & \equiv & 4a^{-1} \pmod{20} \qquad | \quad \cdot (a-1) \\ a(a-1)^{-1}(a-1)^1 & \equiv & 4a^{-1}(a-1) \pmod{20} \\ & \quad & | \quad (a-1)^{-1}(a-1)^1 =(a-1)^{-1+1} =(a-1)^{0} = 1 \\ a & \equiv & 4a^{-1}(a-1) \pmod{20} \qquad | \quad \cdot a \\ a^2 & \equiv & 4a^{-1}a^1(a-1) \pmod{20} \\ & \quad & | \quad a^{-1}a^1 = a^{-1+1} = a^{0} = 1 \\ a^2 &\equiv & 4(a-1) \pmod{20} \qquad | \quad - 4(a-1) \\ a^2 - 4(a-1)&\equiv & 4(a-1)- 4(a-1) \pmod{20} \\ a^2 - 4(a-1)&\equiv & 0 \pmod{20} \\ a^2-4a+4 & \equiv & 0 \pmod{20} \\ \mathbf{ (a-2)^2 } & \mathbf{ \equiv } & \mathbf{ 0 \pmod{20} } \\ \hline \end{array}\)

 

\(\text{Therefore, $20$ divides $(a-2)^2$ }\)

 

\(\begin{array}{|rcll|} \hline (a-2)^2 &=& n\cdot 20 \\ a-2 &=& \sqrt{20n} \\ \mathbf{a} & \mathbf{=} & \mathbf{ 2+ \sqrt{20n} } \quad & | \quad \text{if $\sqrt{20n}$ is an integer. $\quad 20 = 2^2\cdot 5$ } \\ \hline \end{array} \)

 

\(\text{so $n$ must complete the $20 (=2^2\cdot 5)$ to a perfect square.} \)

A perfect square has each distinct prime factor occurring an even number of times.

 

\(\begin{array}{|lrcll|} \hline & a &=& 2 + \sqrt{20n} \qquad | \quad 20 = 2^2\cdot 5 \\ & a &=& 2 + \sqrt{2^2\cdot 5\cdot n} \\\\ n=5 & a &=& 2 + \sqrt{2^2\cdot 5\cdot 5} \\ & &=& 2 + \sqrt{2^2\cdot 5^2} \qquad | \quad \text{$2^2\cdot 5^2$ has each distinct prime factor$\\$occurring an even number of times } \\ & &=& 2 + 2\cdot 5 \\ & \mathbf{a} & \mathbf{=} & \mathbf{12}\checkmark \qquad | \quad 0 \le a < 100 \\\\ n=2^25 & a &=& 2 + \sqrt{2^2\cdot 5\cdot 2^2\cdot 5} \\ & &=& 2 + \sqrt{2^4\cdot 5^2} \qquad | \quad \text{$2^4\cdot 5^2$ has each distinct prime factor$\\$occurring an even number of times } \\ & &=& 2 + 2^2\cdot 5 \\ & \mathbf{a} & \mathbf{=} & \mathbf{22}\checkmark \qquad | \quad 0 \le a < 100 \\\\ n=5^3 & a &=& 2 + \sqrt{2^2\cdot 5\cdot 5^3} \\ & &=& 2 + \sqrt{2^2\cdot 5^4} \qquad | \quad \text{$2^2\cdot 5^4$ has each distinct prime factor$\\$occurring an even number of times } \\ & &=& 2 + 2\cdot 5^2 \\ & \mathbf{a} & \mathbf{=} & \mathbf{52}\checkmark \qquad | \quad 0 \le a < 100 \\\\ n=2^25^3 & a &=& 2 + \sqrt{2^2\cdot 5\cdot 2^2 \cdot 5^3} \\ & &=& 2 + \sqrt{2^4\cdot 5^4} \qquad | \quad \text{$2^4\cdot 5^4$ has each distinct prime factor$\\$occurring an even number of times } \\ & &=& 2 + 2^2\cdot 5^2 \\ & \mathbf{a} & \mathbf{=} & \mathbf{102} \text{ no } \qquad | \quad 0 \le a < 100 \\ \hline \end{array}\)

 

\(\mathbf{a = 12, 22, \text{ and } 52}\)


\(\text{But technically, $a^{-1}$ and $(a-1)^{-1}$ have to exist $\mod {20}$, $\\$which means both $a$ and $a-1$ are coprime to $20$.} \)
Which is impossible as either one of them has to be even.

 

laugh

Jun 8, 2018

2 Online Users

avatar