Questions   
Sort: 
Jul 12, 2019
 #2
avatar+9479 
+5

2)  This one is tricky but here's my attempt...

 

I started by making this list:

 

b( 1 ) _ = _ 1
b( 2 ) = 1
b( 3 ) = 2
b( 4 ) = 2
b( 5 ) = 2
b( 6 ) = 2
b( 7 ) = 3
b( 8 ) = 3
b( 9 ) = 3
b( 10 ) = 3
b( 11 ) = 3
b( 12 ) = 3
b( 13 ) = 4
b( 14 ) = 4
b( 15 ) = 4
b( -16- ) = 4

.

.

.

       
b( 1980 ) = 44
b( 1981 ) = 45
b( 1982 ) = 45
b( 1983 ) = 45
b( 1984 ) = 45
b( 1985 ) = 45
b( 1986 ) = 45
b( 1987 ) = 45
b( 1988 ) = 45
b( 1989 ) = 45
b( 1990 ) = 45
b( 1991 ) = 45
b( 1992 ) = 45
b( 1993 ) = 45
b( 1994 ) = 45
b( 1995 ) = 45
b( 1996 ) = 45
b( 1997 ) = 45
b( 1998 ) = 45
b( 1999 ) = 45
b( 2000 ) = 45
b( 2001 ) = 45
b( 2002 ) = 45
b( 2003 ) = 45
b( 2004 ) = 45
b( 2005 ) = 45
b( 2006 ) = 45
b( 2007 ) = 45

 

By now we can notice something...

 

b( 7 )  =  3   because  7   is closer to  9  than  4,  and
b( 12 )  =  3   because  12   is closer to  9  than  16

 

Between  4  and  9 ,  there are  4  numbers and  4/2  =  2

 

Between  9  and  16  there are  6  numbers and  6/2  =  3

 

So the number of 3's   =  1 + 2 + 3   =   6

 

We can backtrack the previous steps to get...

 

the number of 3's   =   \(1+\frac{4}{2}+\frac62\ =\ 1+\frac{9-4-1}{2}+\frac{16-9-1}{2}\ =\ 1+\frac{3^2-(3-1)^2-1}{2}+\frac{(3+1)^2-3^2-1}{2}\)

 

So in general,

 

the number of  n's   =   \(1+\frac{n^2-(n-1)^2-1}{2}+\frac{(n+1)^2-n^2-1}{2}\)     which simplifies to...

 

the number of n's   =   2n

 

This agrees with the list from earlier!!! laughlaugh

 

Except the number of  45's  is only  27  because the list ends at  b(2007)

 

\(\sum\limits_{p=1}^{2007}b(p)\ =\ b(1)+b(2)+b(3)+b(4)+b(5)+b(6)+b(7)+\dots+b(2006)+b(2007)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 1+1+2+2+2+2+3+\dots+45+45\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 2(1)+4(2)+6(3)+\dots+88(44)+27(45)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ \sum\limits_{k=1}^{44}(2k)(k)\quad+\ 27(45)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ \sum\limits_{k=1}^{44}(2k)(k)\quad+\ 27(45)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 2\sum\limits_{k=1}^{44}k^2\quad+\ 27(45)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 2(\frac{44(44+1)(2(44)+1)}{6})\quad+\ 27(45)\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 58740\quad+\ 1215\\~\\ \sum\limits_{p=1}^{2007}b(p)\ =\ 59955 \)

 

 

P.S. There definitely might be a better way to do it... smiley

Jul 12, 2019
 #1
avatar
0
Jul 12, 2019
 #2
avatar+26387 
+4

3.
The sequence \((a_n)\) is defined recursively by \(a_0=1,\ a_1=\sqrt[19]{2}\), and \(a_n=a_{n-1}a_{n-2}^2\) for \(n\geq 2\).
What is the smallest positive integer k such that the product \(a_1a_2\cdots a_k\) is an integer?

 

\(\begin{array}{|l|r|rcl|l|} \hline & k & \text{product } a_1a_2\cdots a_k \\ \hline a_2 = a_1a_0^2=a_1^1 & 2 & a_1a_2 &=& a_1^2 & =2^{\frac{2}{19}} & = 1.07569058622 \\ \hline a_3 = a_2a_1^2=a_1^1a_1^2=a_1^3 & 3 & a_1a_2a_3 &=& a_1^5 & =2^{\frac{5}{19}} & = 1.20010271958 \\ \hline a_4 = a_3a_2^2=a_1^3a_1^2=a_1^5& 4 & a_1a_2\cdots a_4&=& a_1^{10} & =2^{\frac{10}{19}} & = 1.49375896165 \\ \hline a_{5} = a_4a_3^2=a_1^{5}a_1^{6}=a_1^{11} & 5 & a_1a_2\cdots a_5 &=& a_1^{21} & =2^{\frac{21}{19}} & = 2.15138117244 \\ \hline a_{6} = a_5a_4^2=a_1^{11}a_1^{10}=a_1^{21} & 6 & a_1a_2\cdots a_6 &=& a_1^{42} & =2^{\frac{42}{19}} & = 4.62844094913 \\ \hline a_{7} = a_6a_5^2=a_1^{21}a_1^{33}=a_1^{43} & 7 & a_1a_2\cdots a_7 &=& a_1^{85} & =2^{\frac{85}{19}} & = 22.2184182818 \\ \hline a_{8} = a_7a_6^2=a_1^{43}a_1^{42}=a_1^{85} & 8 & a_1a_2\cdots a_8 &=& a_1^{170} & =2^{\frac{170}{19}} & = 493.658110947 \\ \hline a_{9} = a_8a_7^2=a_1^{85}a_1^{86}=a_1^{171} & 9 & a_1a_2\cdots a_9 &=& a_1^{341} & =2^{\frac{341}{19}} & = 252752.952805 \\ \hline a_{10} = a_9a_8^2=a_1^{171}a_1^{170}=a_1^{341} & 10 & a_1a_2\cdots a_{10} &=& a_1^{682} & =2^{\frac{682}{19}} & = 2^{35.8947368421} \\ \hline a_{11} = a_{10}a_{9}^2=a_1^{341}a_1^{342}=a_1^{683} & 11 & a_1a_2\cdots a_{11} &=& a_1^{1365} & =2^{\frac{1365}{19}} & = 2^{71.8421052632} \\ \hline a_{12} = a_{11}a_{10}^2=a_1^{683}a_1^{682}=a_1^{1365} & 12 & a_1a_2\cdots a_{12} &=& a_1^{2730} & =2^{\frac{2730}{19}} & = 2^{143.684210526} \\ \hline a_{13} = a_{12}a_{11}^2=a_1^{1365}a_1^{1366}=a_1^{2731} & 13 & a_1a_2\cdots a_{13} &=& a_1^{5461} & =2^{\frac{5461}{19}} & = 2^{287.421052632} \\ \hline a_{14} = a_{13}a_{12}^2=a_1^{2731}a_1^{2730}=a_1^{5461} & 14 & a_1a_2\cdots a_{14} &=& a_1^{10922} & =2^{\frac{10922}{19}} & = 2^{574.842105263} \\ \hline a_{15} = a_{14}a_{13}^2=a_1^{5461}a_1^{5462}=a_1^{10923} & 15 & a_1a_2\cdots a_{15} &=& a_1^{21845} & =2^{\frac{21845}{19}} & = 2^{1,149.73684211} \\ \hline a_{16} = a_{15}a_{14}^2=a_1^{10923}a_1^{10922}=a_1^{21845} & 16 & a_1a_2\cdots a_{16} &=& a_1^{43690} & =2^{\frac{43690}{19}} & = 2^{2,299.47368421} \\ \hline a_{17} = a_{16}a_{15}^2=a_1^{21845}a_1^{21846}=a_1^{43691} & \mathbf{17} & a_1a_2\cdots a_{17} &=& a_1^{87381} & =2^{\frac{87381}{19}} & \mathbf{= 2^{4599}}\\ & & && & & \text{the product $a_1a_2\cdots a_{17}$} \\ & & && & & \text{with $k=17$ is an integer} \\ \hline \end{array}\)

 

The smallest positive integer \(k\) such that the product \(a_1a_2\cdots a_k\) is an integer is \(\mathbf{17}\)

 

laugh

Jul 12, 2019

0 Online Users