How many five digit even integers sums up to 13
5 digit even integerspartitionpermutation−partition−permutation9{4,0,0}0P(4,1),P(4,2),P(4,3){4,0,0},{3,1,0},{2,1,1}(62){2,2,0}9{2,0,0}2P(2,1),P(2,2),P(2,3){2,0,0},{1,1,0}(42)9{0,0,0}413!3!=1=(22)8{5,0,0}0P(5,1),P(5,2),P(5,3){5,0,0},{4,1,0},{3,1,1}(72){3,2,0},{2,2,1}8{3,0,0}2P(3,1),P(3,2),P(3,3){3,0,0},{2,1,0},{1,1,1}(52)8{1,0,0}4P(1,1),P(1,2),P(1,3){1,0,0}(32)7{6,0,0}0P(6,1),P(6,2),P(6,3)(82)7{4,0,0}2P(4,1),P(4,2),P(4,3)(62)7{2,0,0}4P(2,1),P(2,2),P(2,3)(42)7{0,0,0}613!3!=1=(22)6{7,0,0}0P(7,1),P(7,2),P(7,3)(92)6{5,0,0}2P(5,1),P(5,2),P(5,3)(72)6{3,0,0}4P(3,1),P(3,2),P(3,3)(52)6{1,0,0}6P(1,1),P(1,2),P(1,3)(32)5{8,0,0}0P(8,1),P(8,2),P(8,3)(102)5{6,0,0}2P(6,1),P(6,2),P(6,3)(82)5{4,0,0}4P(4,1),P(4,2),P(4,3)(62)5{2,0,0}6P(2,1),P(2,2),P(2,3)(42)5{0,0,0}813!3!=1=(22)4{9,0,0}2P(9,1),P(9,2),P(9,3)(112)4{7,0,0}2P(7,1),P(7,2),P(7,3)(92)4{5,0,0}4P(5,1),P(5,2),P(5,3)(72)4{3,0,0}6P(3,1),P(3,2),P(3,3)(52)4{1,0,0}8P(1,1),P(1,2),P(1,3)(32)3{10,0,0}0P(10,1),P(10,2),P(10,3)(122){10,0,0}−3!1!2!3{8,0,0}2P(8,1),P(8,2),P(8,3)(102)3{6,0,0}4P(6,1),P(6,2),P(6,3)(82)3{4,0,0}6P(4,1),P(4,2),P(4,3)(62)3{2,0,0}8P(2,1),P(2,2),P(2,3)(42)2{11,0,0}0P(11,1),P(11,2),P(11,3)(132){11,0,0}−3!1!2!{10,1,0}−3!1!1!1!2{9,0,0}2P(9,1),P(9,2),P(9,3)(112)2{7,0,0}4P(7,1),P(7,2),P(7,3)(92)2{5,0,0}6P(5,1),P(5,2),P(5,3)(72)2{3,0,0}8P(3,1),P(3,2),P(3,3)(52)1{12,0,0}0P(12,1),P(12,2),P(12,3)(142){12,0,0}−3!1!2!{11,1,0}−3!1!1!1!{10,2,0}−3!1!1!1!{10,1,1}−3!1!2!1{10,0,0}2P(10,1),P(10,2),P(10,3)(122){10,0,0}−3!1!2!1{8,0,0}4P(8,1),P(8,2),P(8,3)(102)1{6,0,0}6P(6,1),P(6,2),P(6,3)(82)1{4,0,0}8P(4,1),P(4,2),P(4,3)(62)
Sum off all permutations:
(22)+(32)+(42)+(52)+(62)+(72)|9…, and 8…+(22)+(32)+(42)+(52)+(62)+(72)+(82)+(92)|7…, and 6…+(22)+(32)+(42)+(52)+(62)+(72)+(82)+(92)+(102)+(112)|5…, and 4…+(42)+(52)+(62)+(72)+(82)+(92)+(102)+(112)+(122)+(132)−2×3!1!2!−1×3!1!1!1!|3…, and 2…+(62)+(82)+(102)+(122)+(142)−3×3!1!2!−2×3!1!1!1!|1…=(22)+(32)+(42)+(52)+(62)+(72)⏟=(83)( hockey stick identity)|9…, and 8…+(22)+(32)+(42)+(52)+(62)+(72)+(82)+(92)⏟=(103)( hockey stick identity)|7…, and 6…+(22)+(32)+(42)+(52)+(62)+(72)+(82)+(92)+(102)+(112)⏟=(123)( hockey stick identity)|5…, and 4…+(42)+(52)+(62)+(72)+(82)+(92)+(102)+(112)+(122)+(132)⏟=(143)−(32)−(22)( hockey stick identity)−2×3!1!2!−1×3!1!1!1!|3…, and 2…+(62)+(82)+(102)+(122)+(142)−3×3!1!2!−2×3!1!1!1!|1…=(83)+(103)+(123)+(143)−((22)+(32))⏟=(43)( hockey stick identity)+(62)+(82)+(102)+(122)+(142)−5×3!1!2!−3×3!1!1!1!=(83)+(103)+(123)+(143)−(43)+(62)+(82)+(102)+(122)+(142)−5×3!1!2!−3×3!1!1!1!(82)+(83)=(93)(102)+(103)=(113)(122)+(123)=(133)(142)+(143)=(153)=(93)+(113)+(133)+(153)−(43)+(62)−5×3!1!2!−3×3!1!1!1!=(93)+(113)+(133)+(153)−(43)+(62)−5×3−3×6=(93)+(113)+(133)+(153)−(43)+(62)−33=84+165+286+455−4+15−33=968
